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Gif showing a wrinkle appear and be sustained.



What do the wrinkles tell us?
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What do the wrinkles tell us?

~ The Langer-Lines are collagen fibers.

~ Incisions made parallel to Langer's
lines produce less scarring.
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~ The exact direction of the collagen
* fibers are unknown.
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What do the wrinkles tell us?

~~ The pinch test.
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What do the wrinkles tell us?

~> Wrinkle prevention
(temper rolling)

~~ Wrinkles identify fibre
orientation.



We look for solutions

u(x, y, 0) = U(y)elk(xcosttysind)
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The Matrix Impedance Method
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Displacement Normal Traction

with E = T71[0, a, K](iZ — R[0, o, K]).
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~~ Zero surface-traction

a-ez‘ O:O — ZUyg=0 = detZ =0.

zZ=



The method is to fix A, and then for each K: Open Gifs
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Beware if you miss the critical K¢,
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A simple choice with a range of anisotropy
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A simple choice with a range of anisotropy

w :%(tr C — 3) + f(det C)
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Extension Compression

M = (cos A,sin A, 0)
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Figure:
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The stiff the fibres, the
closer they hug these
curves (experimental).

Figure:
|---a =0, —90°|
Orthogonal to wrinkle.

{B-1p B+/1}
— {200%, 0%}

— {197%, 31%}
— {190%, 61%}
— {178%, 90%}

{B-/p /1t
— {200%, 0%}

— {197%, 31%)}
— {190%, 61%)}
— {178%, 90%)}



Given the wave vector Ug such that ZUg = 0, then

U(Q-HTH)Uy =0 = dW(u)k~2 = UJQUo—U}RT T *RU, = 0,



Given the wave vector Ug such that ZUg = 0, then
Ul (Q—HTH)Uy =0 — §W(u)k2 = U{QUo,—U}RT T *RU, = 0,

that is, zero-traction implies no (average density) potential energy
increment.




Given the wave vector Ug such that ZUg = 0, then
Ul (Q—HTH)Uy =0 — §W(u)k2 = U{QUo,—U}RT T *RU, = 0,

that is, zero-traction implies no (average density) potential energy
increment.

~> More generally; the wrinkle will minimize 6 W.
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Any questions?

Thanks for listening and hope you enjoyed the talk!
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