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Biot in 1963 predicts,

Here is a movie of this mental experiment.
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Theoretical Model

Shear-box x = χ(X , θ)

plus small x̃j = xj + uj with

uj(x , y , z) = Uj(y)e ik(x cosφ+z sinφ).

χ(X , θ)

θ

L

L

φ

div σ = 0 with σij = Ajilk uk,l︸ ︷︷ ︸
Incremental Equilibrium Equations

lim
y→∞

uij → 0︸ ︷︷ ︸
Decay Condition

σ21 = σ22 = σ23 = 0︸ ︷︷ ︸
Zero Surface traction
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Theoretical Model

Mooney-Rivlin

W =
µ

4
[(1 + f ) (I1 − 3) + (1− f ) (I2 − 3)] ,

with

I1 = tr FTF and I2 =
1

2
(tr FTF )2 − 1

2
tr (FTF )2.

Destrade et al. (2005) found an explicit bifurcation equation.

This equation reduces greatly for

Neo-Hookean f = 1, [Flavin(1963)] with σ0 = 0.296

λ21λ
2
2(λ21 sin2 φ+ λ22 cos2 φ) = σ20,

Extreme Mooney-Rivlin f = −1 with the above σ0
σ40 + σ30 + λ21λ

2
2

(
λ41λ

4
2 − λ22 − λ21

)
σ0(σ0 + 1) + 4λ61λ

6
2 = 0
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Vague Energy Considerations

min
u

W (F ) =⇒ div σ = 0.

First wrinkles are not oblique when wrinkles are predominantly
transverse. For example..

W (F ) W (F )− δW (∇u)W (F ) + δW (∇u)
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Vague Energy Considerations

Similarily: zero traction =⇒ zero surface energy increment.
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Vague Energy Considerations

Similarily: zero traction =⇒ zero surface energy increment.

0 = u∗i σi2 = Ajilku
∗
i ,jul ,k = δW (∇u), on y = 0.

W (F )

W (F )− δW (∇u)

W (F ) + δW (∇u)



What next?

New theoretical oblique wrinkle

Yet not observered

Only “highly” nonlinear materials exhibit the phenomena

Energy considerations are always interesting.

Any questions?
Thanks for listening and hope you enjoyed the talk!
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