

The Potential Energy of Residually Stressed Solids

Author: Artur L. Gower *Co-Author:* Dr. Pasquale Ciarletta

Supervisor: prof. Michel Destrade

National University of Ireland Galway

Measurement from hell

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Measurement from hell

SAC

≣⇒

We apply the laws of physics to a continuous blob which is moving through space.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

We apply the laws of physics to a continuous blob which is moving through space.

With each position $x = \chi(X, t)$ we associate denisties such as mass $\rho(x, t)$ and stress $\mathbf{T}^{(n)}(x, t)$.

To describe the forces $F_1(X, t)$, $F_2(X, t)$, $T^{(n)}(X, t)$, $n \in T_x B_t$, we make an imaginary slice

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

To describe the forces $F_1(X, t)$, $F_2(X, t)$, $T^{(n)}(X, t)$, $n \in T_x B_t$, we make an imaginary slice

The forces \mathbf{F}_1 and \mathbf{F}_2 may be determined by Boundary conditions.

To describe the forces $F_1(X, t)$, $F_2(X, t)$, $T^{(n)}(X, t)$, $n \in T_x B_t$, we make an imaginary slice

The forces \mathbf{F}_1 and \mathbf{F}_2 may be determined by Boundary conditions. While the internal stress $\mathbf{T}^{(n)}$ can be written as $\mathbf{T}^{(n)} = \boldsymbol{\sigma} \cdot \mathbf{n}$. (One of Cauchy's many theories). • We call $\boldsymbol{\sigma}$ a stress tensor, with $\boldsymbol{\sigma}(X, t) \in T_X \mathcal{B}_t \otimes T_X \mathcal{B}_t$.

The residual stress tensor $au = \sigma$, when all external load is

To incorporate the residual stress au into the mechanics, we use the above as a reference state.

The circumferential stress in the cross section of an artery:

(a) is unloaded, (b) is loaded (assuming isotropy).

The usual laws of physics alone are not enough to determine the stress σ in terms of χ and τ .

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The usual laws of physics alone are not enough to determine the stress σ in terms of χ and τ . We need to make some assumptions about the potential energy density function \hat{W} , with $W(X,t) = \hat{W}(\chi,\tau)$.

The usual laws of physics alone are not enough to determine the stress σ in terms of χ and τ . We need to make some assumptions about the potential energy density function \hat{W} , with $W(X,t) = \hat{W}(\chi,\tau)$.

Assumption of History Independance

 \hat{W} is independent of the past of $\chi(\cdot, t)$. That is for time t, W(X, t) depends on $\chi(\cdot, t)$ and $\tau(\cdot)$. (Much like a spring)

The usual laws of physics alone are not enough to determine the stress σ in terms of χ and τ . We need to make some assumptions about the potential energy density function \hat{W} , with $W(X,t) = \hat{W}(\chi,\tau)$.

Assumption of History Independance

 \hat{W} is independent of the past of $\chi(\cdot, t)$. That is for time t, W(X, t) depends on $\chi(\cdot, t)$ and $\tau(\cdot)$. (Much like a spring)

Assumption of Locality

W(X, t) can be completely determined by any neighbordhood of $\chi(X, t)$ and $\tau(X)$. W depends only on the local stretch and pull.

Assumption of History Independance

 \hat{W} is independent of the past of $\chi(\cdot, t)$. That is for time t, W(X, t) depends on $\chi(\cdot, t)$ and $\tau(\cdot)$. (Much like a spring)

Assumption of Locality

W(X, t) can be completely determined by any neighbordhood of $\chi(X, t)$ and $\tau(X)$. W depends only on the local stretch and pull.

The result $W(X, t) = \hat{W}(\mathbf{C}(X, t), \tau(X))$, where $\mathbf{C}(X, t) = \mathbf{D}\chi^{T}(X, t)\mathbf{D}\chi(X, t)$ and

$$\boldsymbol{\sigma}(X,t) = 2\rho \mathbf{D}\chi(X,t) \frac{\partial \hat{W}}{\partial \mathbf{C}} (\mathbf{C}(X,t),\boldsymbol{\tau}(X)) \mathbf{D}\chi^{\mathsf{T}}(X,t).$$

$$ho \ddot{\chi} = {\sf div} \; oldsymbol{\sigma}$$
 (Equation of Motion)

$$ho\ddot{\chi}={\sf div}\;m{\sigma}$$
 (Equation of Motion) $m{\sigma}=2
ho{\sf D}\chirac{\partial\hat{W}}{\partial{\sf C}}{\sf D}\chi^{{\cal T}}$ (Constitutive Assumption)

 $ho\ddot{\chi} = {\sf div} \; \boldsymbol{\sigma} \;$ (Equation of Motion) $\boldsymbol{\sigma} = 2
ho {\sf D} \chi rac{\partial \hat{W}}{\partial {\sf C}} {\sf D} \chi^{\mathcal{T}}$ (Constitutive Assumption) $\boldsymbol{\sigma}(X,t) = {\sf F}_1(X) \; {\sf for} \; X \in \partial \mathcal{B}$ (Boundary Conditions)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

 $ho\ddot{\chi} = {\sf div}\; {\pmb \sigma} \ \ (\ {\sf Equation of Motion} \)$ ${\pmb \sigma} = 2
ho {f D} \chi rac{\partial \hat{W}}{\partial {f C}} {f D} \chi^{{\cal T}} \ \ ({\sf Constitutive Assumption})$ ${\pmb \sigma}(X,t) = {f F}_1(X) \ {\sf for} \ X \in \partial {\cal B} \ \ (\ {\sf Boundary Conditions})$

We assume given the initial \mathcal{B} along with its physical attributes, including the residual stress tensor τ .

 $ho\ddot{\chi} = {\sf div} \ oldsymbol{\sigma}$ (Equation of Motion) $oldsymbol{\sigma} = 2
ho {\sf D}\chi rac{\partial \hat{W}}{\partial {\sf C}} {\sf D}\chi^T$ (Constitutive Assumption) $oldsymbol{\sigma}(X,t) = {\sf F}_1(X)$ for $X \in \partial \mathcal{B}$ (Boundary Conditions)

We assume given the initial \mathcal{B} along with its physical attributes, including the residual stress tensor τ .

What remains is to specify the dependance of \hat{W} on **C** and τ ...

Without the residual stress au we know that

 \longrightarrow Potential energy $\hat{W}({f C},{f 0})$ increases \longrightarrow

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

For a residually stressed body it is not so clear

э

イロト イポト イヨト イヨト

For a residually stressed body it is not so clear

э

For a residually stressed body it is not so clear

э

(日)、

For a residually stressed body it is not so clear

 \longrightarrow how does the potential energy $\hat{W}({f C}, au)$ change? \longrightarrow

3

Independent of a rotation of the reference configuration:

Independent of a rotation of the reference configuration:

$$\hat{W}(\mathbf{C},\mathbf{0}) = \hat{W}(\mathbf{Q}^{\mathsf{T}}\mathbf{C}\mathbf{Q},\mathbf{0}), \quad (\mathbf{C} = \mathbf{D}\chi^{\mathsf{T}}\mathbf{D}\chi)$$

・ロト・日本・モト・モート ヨー うへで

for any $\mathbf{Q}^T \mathbf{Q} = \mathbf{I}$.

Independent of a rotation of the reference configuration:

$$\hat{W}(\mathbf{C}, \mathbf{0}) = \hat{W}(\mathbf{Q}^{\mathsf{T}} \mathbf{C} \mathbf{Q}, \mathbf{0}), \quad (\mathbf{C} = \mathbf{D} \chi^{\mathsf{T}} \mathbf{D} \chi)$$

for any $\mathbf{Q}^T \mathbf{Q} = \mathbf{I}$. Hence we can diagonalize $\mathbf{Q}^T \mathbf{C} \mathbf{Q}$, so that

$$\hat{W}(\mathbf{C},\mathbf{0}) = \hat{W}\left(\begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 \end{pmatrix}, \mathbf{0} \right) = \Psi(\operatorname{tr} \mathbf{C}, (\operatorname{tr} \mathbf{C})^2 - \operatorname{tr} \mathbf{C}^2, \det \mathbf{C}).$$

where

$$\begin{split} & \text{tr } \mathbf{C} = \lambda_1 + \lambda_2 + \lambda_3, \\ (\text{tr } \mathbf{C})^2 - \text{tr } \mathbf{C}^2 = \lambda_1 \lambda_2 + \lambda_2 \lambda_3 + \lambda_3 \lambda_1 - 3 \\ & \text{det } \mathbf{C} = \lambda_1 \lambda_2 \lambda_3. \end{split}$$

・ロト・日本・モト・モート ヨー うへで

Independent of a rotation of the reference configuration:

$$\hat{W}(\mathbf{C}, \mathbf{0}) = \hat{W}(\mathbf{Q}^{\mathsf{T}} \mathbf{C} \mathbf{Q}, \mathbf{0}), \quad (\mathbf{C} = \mathbf{D} \chi^{\mathsf{T}} \mathbf{D} \chi)$$

for any $\mathbf{Q}^T \mathbf{Q} = \mathbf{I}$. Hence we can diagonalize $\mathbf{Q}^T \mathbf{C} \mathbf{Q}$, so that

$$\hat{W}(\mathbf{C},\mathbf{0}) = \hat{W}\left(\begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 \end{pmatrix}, \mathbf{0} \right) = \Psi(\operatorname{tr} \mathbf{C}, (\operatorname{tr} \mathbf{C})^2 - \operatorname{tr} \mathbf{C}^2, \det \mathbf{C}).$$

where

$$\begin{split} & \text{tr } \mathbf{C} = \lambda_1 + \lambda_2 + \lambda_3, \\ (\text{tr } \mathbf{C})^2 - \text{tr } \mathbf{C}^2 = \lambda_1 \lambda_2 + \lambda_2 \lambda_3 + \lambda_3 \lambda_1 - 3 \\ & \text{det } \mathbf{C} = \lambda_1 \lambda_2 \lambda_3. \end{split}$$

One successful expansion

$$\hat{W}(\mathbf{C},\mathbf{0}) = \mathit{C}_1$$
tr $\mathbf{C} + \mathit{C}_2((ext{tr}~\mathbf{C})^2 - ext{tr}~\mathbf{C}^2) + \mathit{C}_3$ det \mathbf{C} .

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Still independent of a rotation of the reference configuration:

(ロ)、(型)、(E)、(E)、 E) の(の)

Still independent of a rotation of the reference configuration:

 $\hat{W}(\mathbf{C}, \boldsymbol{\tau}) = \hat{W}(\mathbf{Q}^{\mathsf{T}}\mathbf{C}\mathbf{Q}, \mathbf{Q}^{\mathsf{T}}\boldsymbol{\tau}\mathbf{Q}),$

Still independent of a rotation of the reference configuration:

$$\hat{W}(\mathbf{C}, \boldsymbol{\tau}) = \hat{W}(\mathbf{Q}^{T}\mathbf{C}\mathbf{Q}, \mathbf{Q}^{T}\boldsymbol{\tau}\mathbf{Q}),$$

One possible set of independent invariants [Shams et al. (2011)] is

tr C,
$$(tr C)^2 - tr C^2$$
, det C,
tr τ , tr τ^2 , tr τ^3 ,
tr (τC) , tr (τC^2) , tr $(\tau^2 C)$, tr $(\tau^2 C^2)$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
Still independent of a rotation of the reference configuration:

$$\hat{W}(\mathbf{C}, \boldsymbol{\tau}) = \hat{W}(\mathbf{Q}^{T}\mathbf{C}\mathbf{Q}, \mathbf{Q}^{T}\boldsymbol{\tau}\mathbf{Q}),$$

One possible set of independent invariants [Shams et al. (2011)] is

tr C,
$$(tr C)^2 - tr C^2$$
, det C,
tr τ , tr τ^2 , tr τ^3 ,
tr (τC) , tr (τC^2) , tr $(\tau^2 C)$, tr $(\tau^2 C^2)$.

A total of ten invariants!

Still independent of a rotation of the reference configuration:

$$\hat{W}(\mathbf{C}, \boldsymbol{\tau}) = \hat{W}(\mathbf{Q}^{T}\mathbf{C}\mathbf{Q}, \mathbf{Q}^{T}\boldsymbol{\tau}\mathbf{Q}),$$

One possible set of independent invariants [Shams et al. (2011)] is

tr C,
$$(tr C)^2 - tr C^2$$
, det C,
tr τ , tr τ^2 , tr τ^3 ,
tr (τC) , tr (τC^2) , tr $(\tau^2 C)$, tr $(\tau^2 C^2)$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

A total of ten invariants! Too many constants to fit to experimental data:

Still independent of a rotation of the reference configuration:

$$\hat{W}(\mathbf{C}, \boldsymbol{\tau}) = \hat{W}(\mathbf{Q}^{T}\mathbf{C}\mathbf{Q}, \mathbf{Q}^{T}\boldsymbol{\tau}\mathbf{Q}),$$

One possible set of independent invariants [Shams et al. (2011)] is

tr C,
$$(tr C)^2 - tr C^2$$
, det C,
tr τ , tr τ^2 , tr τ^3 ,
tr (τC) , tr (τC^2) , tr $(\tau^2 C)$, tr $(\tau^2 C^2)$.

A total of ten invariants! Too many constants to fit to experimental data:

$$W = C_1 \operatorname{tr} \, \mathbf{C} + C_2 ((\operatorname{tr} \, \mathbf{C})^2 - \operatorname{tr} \, \mathbf{C}^2) + C_3 \det \mathbf{C} + T_1 \operatorname{tr} \, \boldsymbol{\tau} + T_2 \operatorname{tr} \, \boldsymbol{\tau}^2 ...$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Still independent of a rotation of the reference configuration:

$$\hat{W}(\mathbf{C}, \boldsymbol{\tau}) = \hat{W}(\mathbf{Q}^{T}\mathbf{C}\mathbf{Q}, \mathbf{Q}^{T}\boldsymbol{\tau}\mathbf{Q}),$$

One possible set of independent invariants [Shams et al. (2011)] is

tr C,
$$(tr C)^2 - tr C^2$$
, det C,
tr τ , tr τ^2 , tr τ^3 ,
tr (τ C), tr (τ C²), tr (τ^2 C), tr (τ^2 C²).

A total of ten invariants! Too many constants to fit to experimental data:

$$W = C_1 \operatorname{tr} \, \mathbf{C} + C_2 ((\operatorname{tr} \, \mathbf{C})^2 - \operatorname{tr} \, \mathbf{C}^2) + C_3 \det \mathbf{C} + T_1 \operatorname{tr} \, \boldsymbol{\tau} + T_2 \operatorname{tr} \, \boldsymbol{\tau}^2 ..$$

■ Which should be used/dropped (warnings from Anisotropy)?

Still independent of a rotation of the reference configuration:

$$\hat{W}(\mathbf{C}, \boldsymbol{ au}) = \hat{W}(\mathbf{Q}^{T}\mathbf{C}\mathbf{Q}, \mathbf{Q}^{T}\boldsymbol{ au}\mathbf{Q}),$$

One possible set of independent invariants [Shams et al. (2011)] is

tr C,
$$(tr C)^2 - tr C^2$$
, det C,
tr τ , tr τ^2 , tr τ^3 ,
tr (τ C), tr (τ C²), tr (τ^2 C), tr (τ^2 C²).

A total of ten invariants! Too many constants to fit to experimental data:

$$W = C_1 \operatorname{tr} \, \mathbf{C} + C_2 ((\operatorname{tr} \, \mathbf{C})^2 - \operatorname{tr} \, \mathbf{C}^2) + C_3 \det \mathbf{C} + T_1 \operatorname{tr} \, \boldsymbol{\tau} + T_2 \operatorname{tr} \, \boldsymbol{\tau}^2 ...$$

Which should be used/dropped (warnings from Anisotropy)? What expansion to use?

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● のへで

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

So we get energy as $W\left(\mathbf{C}, \mathbf{ au}
ight) = W_{\mathcal{C}}\left(ilde{\mathbf{C}}\cdot\mathbf{C}
ight)$!

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

 \downarrow Cut and check.

So we get energy as $W\left(\mathbf{C}, \mathbf{ au}
ight) = W_{\mathcal{C}}\left(ilde{\mathbf{C}}\cdot\mathbf{C}
ight)$!

 \downarrow Cut and check. \downarrow Guess W_c

So we get energy as $W\left(\mathbf{C}, \mathbf{ au}
ight) = W_{\mathcal{C}}\left(ilde{\mathbf{C}} \cdot \mathbf{C}
ight)$!

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶ 厘 の��

So we get energy as $W\left(\mathbf{C}, \mathbf{ au}
ight) = W_{\mathcal{C}}\left(ilde{\mathbf{C}}\cdot\mathbf{C}
ight)$!

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへ⊙

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

$$\xrightarrow{\tilde{\chi}(R,\Theta)}_{(r(R),\Theta(\theta))}$$

$$\xrightarrow{\tilde{\chi}(R,\Theta)} (r(R),\Theta(\theta))$$

 $a \le r(R) \le b$ $0 \le heta(\Theta) \le 2\pi$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Incompressibility means

$$\det \mathbf{D}\tilde{\chi} = 1 \implies \det \begin{pmatrix} r_R & 0 \\ 0 & \theta_{\Theta} \end{pmatrix} = 1$$

Incompressibility means

$$\det \mathbf{D}\tilde{\chi} = 1 \implies \det \begin{pmatrix} r_R & 0 \\ 0 & \theta_\Theta \end{pmatrix} = 1 \implies r_R \theta_\Theta r/R = 1$$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Incompressibility means

$$\det \mathbf{D}\tilde{\chi} = 1 \implies \det \begin{pmatrix} r_R & 0\\ 0 & \theta_\Theta \end{pmatrix} = 1 \implies r_R \theta_\Theta r/R = 1$$
$$\implies \theta(\Theta) = \frac{2\pi}{\Theta_0} \Theta \text{ and } r(R) = \sqrt{a^2 + \frac{\Theta_0}{2\pi}(R^2 - A^2)}$$

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶ 厘 の��

$$heta(\Theta)=rac{2\pi}{\Theta_0}\Theta$$
 and $r(R)=\sqrt{a^2+rac{\Theta_0}{2\pi}(R^2-A^2)}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

$$\theta(\Theta) = \frac{2\pi}{\Theta_0}\Theta \text{ and } r(R) = \sqrt{a^2 + \frac{\Theta_0}{2\pi}(R^2 - A^2)}$$

Simple: $W_C(\tilde{\mathbf{C}}) = \frac{\mu}{2}(\operatorname{tr} \tilde{\mathbf{C}} - 3) \implies \tau = \mu\rho \mathbf{D}\tilde{\chi}\frac{\partial \operatorname{tr} \tilde{\mathbf{C}}}{\partial \tilde{\mathbf{C}}}\mathbf{D}\tilde{\chi}^T - p(R)\mathbf{I}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

$$\theta(\Theta) = \frac{2\pi}{\Theta_0}\Theta \text{ and } r(R) = \sqrt{a^2 + \frac{\Theta_0}{2\pi}(R^2 - A^2)}$$

Simple: $W_C(\tilde{\mathbf{C}}) = \frac{\mu}{2}(\operatorname{tr} \tilde{\mathbf{C}} - 3) \implies \tau = \mu\rho \mathbf{D}\tilde{\chi}\frac{\partial \operatorname{tr} \tilde{\mathbf{C}}}{\partial \tilde{\mathbf{C}}}\mathbf{D}\tilde{\chi}^T - p(R)\mathbf{I}$

implying that

$$oldsymbol{ au} = egin{pmatrix} au_{rr} & 0 \ 0 & au_{ heta heta} \end{pmatrix} = egin{pmatrix} r_R^2(R) - p(R) & 0 \ 0 & heta_\Theta^2(\Theta)/R^2 - p(R) \end{pmatrix},$$

$$\theta(\Theta) = \frac{2\pi}{\Theta_0}\Theta \text{ and } r(R) = \sqrt{a^2 + \frac{\Theta_0}{2\pi}(R^2 - A^2)}$$

Simple: $W_C(\tilde{\mathbf{C}}) = \frac{\mu}{2}(\operatorname{tr} \tilde{\mathbf{C}} - 3) \implies \tau = \mu\rho \mathbf{D}\tilde{\chi}\frac{\partial \operatorname{tr} \tilde{\mathbf{C}}}{\partial \tilde{\mathbf{C}}}\mathbf{D}\tilde{\chi}^T - p(R)\mathbf{I}$

implying that

$$\boldsymbol{\tau} = \begin{pmatrix} \tau_{rr} & 0\\ 0 & \tau_{\theta\theta} \end{pmatrix} = \begin{pmatrix} r_R^2(R) - p(R) & 0\\ 0 & \theta_{\Theta}^2(\Theta)/R^2 - p(R) \end{pmatrix},$$

$$\tau_{rr}(A) = r_R^2(A) - p(A) = 0 = \tau_{rr}(B) = r_R^2(B) - p(B).$$

$$\theta(\Theta) = \frac{2\pi}{\Theta_0}\Theta \text{ and } r(R) = \sqrt{a^2 + \frac{\Theta_0}{2\pi}(R^2 - A^2)}$$

Simple: $W_C(\tilde{\mathbf{C}}) = \frac{\mu}{2}(\operatorname{tr} \tilde{\mathbf{C}} - 3) \implies \tau = \mu\rho \mathbf{D}\tilde{\chi}\frac{\partial \operatorname{tr} \tilde{\mathbf{C}}}{\partial \tilde{\mathbf{C}}}\mathbf{D}\tilde{\chi}^T - p(R)\mathbf{I}$

implying that

$$\boldsymbol{\tau} = \begin{pmatrix} \tau_{rr} & 0\\ 0 & \tau_{\theta\theta} \end{pmatrix} = \begin{pmatrix} r_R^2(R) - p(R) & 0\\ 0 & \theta_{\Theta}^2(\Theta)/R^2 - p(R) \end{pmatrix},$$
$$\tau_{rr}(A) = r_R^2(A) - p(A) = 0 = \tau_{rr}(B) = r_R^2(B) - p(B).$$

Plug into equilibrium equation

div
$$\boldsymbol{\tau} = \mathbf{0} \implies r/r_R \partial_R \tau_{rr} + \tau_{rr} - \tau_{\theta\theta} = \mathbf{0},$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

solve for p(R).

 $\tilde{\mathbf{B}}(\tau) = \mathbf{D}\chi\mathbf{D}\chi^{T}$

▲□▶ ▲□▶ ▲注▶ ▲注▶ 注目 のへで

Adopting $W(\mathbf{C}, \boldsymbol{\tau}) = W_{C}(\mathbf{\tilde{C}C}) = \frac{\mu}{2} \left(\operatorname{tr} (\mathbf{\tilde{C}C}) - 3 \right) = \frac{\mu}{2} \left(\operatorname{tr} (\mathbf{B}\mathbf{\tilde{B}}(\boldsymbol{\tau})) - 3 \right).$ (remember $\mathbf{C} = \mathbf{D}\chi^{T}\mathbf{D}\chi$).

Adopting $W(\mathbf{C}, \boldsymbol{\tau}) = W_{C}(\mathbf{\tilde{C}C}) = \frac{\mu}{2} \left(\operatorname{tr} (\mathbf{\tilde{C}C}) - 3 \right) = \frac{\mu}{2} \left(\operatorname{tr} (\mathbf{B}\mathbf{\tilde{B}}(\boldsymbol{\tau})) - 3 \right).$ (remember $\mathbf{C} = \mathbf{D}\chi^{T}\mathbf{D}\chi$).

Though we assume there is a virtual stress-free state, that gives C, we don't know what it looks like!

To find $ilde{\mathbf{B}}(au)$:

$$\boldsymbol{\tau} = \mu \rho \mathbf{D} \tilde{\boldsymbol{\chi}} \frac{\partial \mathrm{tr} \; \tilde{\mathbf{C}}}{\partial \tilde{\mathbf{C}}} \mathbf{D} \tilde{\boldsymbol{\chi}}^{T} - \rho \mathbf{I} = \mu \tilde{\mathbf{B}} - \rho \mathbf{I},$$

<□ > < @ > < E > < E > E のQ @

To find $ilde{\mathbf{B}}(au)$:

$$\boldsymbol{\tau} = \mu \rho \mathbf{D} \tilde{\boldsymbol{\chi}} \frac{\partial \mathrm{tr} \; \tilde{\mathbf{C}}}{\partial \tilde{\mathbf{C}}} \mathbf{D} \tilde{\boldsymbol{\chi}}^{T} - \rho \mathbf{I} = \mu \tilde{\mathbf{B}} - \rho \mathbf{I},$$

Assume $\tilde{\mathbf{B}}$ incompressible, then after some algebra an inversion is possible.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

To find $ilde{\mathbf{B}}(au)$:

$$\boldsymbol{\tau} = \mu \rho \mathbf{D} \tilde{\boldsymbol{\chi}} \frac{\partial \mathrm{tr} \; \tilde{\mathbf{C}}}{\partial \tilde{\mathbf{C}}} \mathbf{D} \tilde{\boldsymbol{\chi}}^{T} - \rho \mathbf{I} = \mu \tilde{\mathbf{B}} - \rho \mathbf{I},$$

Assume $\tilde{\mathbf{B}}$ incompressible, then after some algebra an inversion is possible. Plain strain example:

$$ilde{\mathbf{B}} = rac{1}{\mu}oldsymbol{ au} + rac{1}{2\mu}\left(- ext{tr}\;oldsymbol{ au} + \sqrt{4\mu^2 + (ext{tr}\;oldsymbol{ au})^2 - 4\detoldsymbol{ au}}
ight) \mathbf{I},$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

To find $ilde{\mathbf{B}}(au)$:

$$\boldsymbol{\tau} = \mu \rho \mathbf{D} \tilde{\boldsymbol{\chi}} \frac{\partial \mathrm{tr} \; \tilde{\mathbf{C}}}{\partial \tilde{\mathbf{C}}} \mathbf{D} \tilde{\boldsymbol{\chi}}^{T} - \rho \mathbf{I} = \mu \tilde{\mathbf{B}} - \rho \mathbf{I},$$

Assume $\hat{\mathbf{B}}$ incompressible, then after some algebra an inversion is possible. Plain strain example:

$$ilde{\mathbf{B}} = rac{1}{\mu} oldsymbol{ au} + rac{1}{2\mu} \left(- ext{tr} \ oldsymbol{ au} + \sqrt{4\mu^2 + (ext{tr} \ oldsymbol{ au})^2 - 4 \det oldsymbol{ au}}
ight) \mathbf{I},$$

then using $W(\mathbf{C}, \mathbf{ au}) = W_{\mathcal{C}}(\mathbf{B} ilde{\mathbf{B}})$, leading to

$$W(\mathbf{C}, \boldsymbol{\tau}) = \frac{1}{2} \operatorname{tr}(\mathbf{B}\boldsymbol{\tau}) + \frac{1}{4} \operatorname{tr}\mathbf{B}\left(-\operatorname{tr}\boldsymbol{\tau} + \sqrt{4\mu^2 + (\operatorname{tr}\,\boldsymbol{\tau})^2 - 4\det\boldsymbol{\tau}}\right) - \mu$$

・ロト ・西ト ・ヨト ・ヨー うらぐ

Looking for a "cut" stress-free state:

æ

イロト イポト イヨト イヨト

Looking for a "cut" stress-free state:

(日)、

э

_ ∢ ≣ ▶

Looking for a "cut" stress-free state:

Looking for a "cut" stress-free state:

For a given stress field au

finding a stress-free state embedded in \mathbb{R}^3 is like finding a needle in a nine dimensional haystack.
Stress au as Input

Looking for a "cut" stress-free state:

For a given stress field τ

finding a stress-free state embedded in \mathbb{R}^3 is like finding a needle in a nine dimensional haystack.

 \blacksquare Is it necessary that the vitural state be an embedding in \mathbb{R}^3 ?

・ロト ・ 雪 ト ・ ヨ ト

This method takes a measured τ and produces $W(\mathbf{C}, \tau)$.

This method takes a measured τ and produces $W(\mathbf{C}, \tau)$.

■ However it assumes a stress-free state living in some space.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

This method takes a measured τ and produces $W(\mathbf{C}, \tau)$.

■ However it assumes a stress-free state living in some space. Associated to a family of possible maps $\tilde{\chi}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

This method takes a measured τ and produces $W(\mathbf{C}, \tau)$.

■ However it assumes a stress-free state living in some space. Associated to a family of possible maps $\tilde{\chi}$.

Should we only except $\tilde{\chi}$ where the stress-free state is embedded in $\mathbf{R}^3?$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

This method takes a measured τ and produces $W(\mathbf{C}, \tau)$.

However it assumes a stress-free state living in some space. Associated to a family of possible maps $\tilde{\chi}$.

Should we only except $\tilde{\chi}$ where the stress-free state is embedded in $\mathbf{R}^3?$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

 \blacksquare Should the riemannian metric $\tilde{\textbf{G}}$ lead to a torsion-free connection?

This method takes a measured τ and produces $W(\mathbf{C}, \tau)$.

However it assumes a stress-free state living in some space. Associated to a family of possible maps $\tilde{\chi}$.

Should we only except $\tilde{\chi}$ where the stress-free state is embedded in \mathbf{R}^3 ?

- Should the riemannian metric $\tilde{\mathbf{G}}$ lead to a torsion-free connection?
- $\blacksquare \text{ How about the mixed derivatives } \partial_{\tilde{X}_i \tilde{X}_j} \tilde{\chi} = \partial_{\tilde{X}_j \tilde{X}_i} \tilde{\chi}?$

This method takes a measured τ and produces $W(\mathbf{C}, \tau)$.

However it assumes a stress-free state living in some space. Associated to a family of possible maps $\tilde{\chi}$.

Should we only except $\tilde{\chi}$ where the stress-free state is embedded in \mathbf{R}^3 ?

- Should the riemannian metric $\tilde{\mathbf{G}}$ lead to a torsion-free connection?
- $\blacksquare \text{ How about the mixed derivatives } \partial_{\tilde{X}_i \tilde{X}_j} \tilde{\chi} = \partial_{\tilde{X}_j \tilde{X}_i} \tilde{\chi}?$

Any questions?

This method takes a measured τ and produces $W(\mathbf{C}, \tau)$.

However it assumes a stress-free state living in some space. Associated to a family of possible maps $\tilde{\chi}$.

- Should we only except $\tilde{\chi}$ where the stress-free state is embedded in $\mathbf{R}^3?$
- \blacksquare Should the riemannian metric $\tilde{\textbf{G}}$ lead to a torsion-free connection?
- $\blacksquare \text{ How about the mixed derivatives } \partial_{\tilde{X}_i \tilde{X}_j} \tilde{\chi} = \partial_{\tilde{X}_j \tilde{X}_i} \tilde{\chi}?$

∃ <2 <</p>

Any questions?

Thanks for listening and hope you enjoyed the talk!

- M. Shams and M. Destrade and R.W. Ogden, Initial stresses in elastic solids: Constitutive laws and acoustoelasticity, Wave Motion, 48 (2011) 552 – 567.
- Jose Merodio, Ray W. Ogden, Javier Rodriguez, The influence of residual stress on finite deformation elastic response, International Journal of Non-Linear Mechanics, 56 (2013), 43 – 49.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ