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Continuum Blob Mechanics

We apply the laws of physics to a continuous blob which is moving
through space.

= Bt

With each position x = χ(X , t) we associate denisties such as
mass ρ(x , t) and stress T(n)(x , t).



Continuum Blob Mechanics

We apply the laws of physics to a continuous blob which is moving
through space.

= Bt

With each position x = χ(X , t) we associate denisties such as
mass ρ(x , t) and stress T(n)(x , t).



Continuum Blob Mechanics

To describe the forces F1(X, t), F2(X, t), T(n)(X, t), n ∈ TxBt ,
we make an imaginary slice

The forces F1 and F2 may be determined by Boundary conditions.
While the internal stress T(n) can be written as T(n) = σ · n.

(One of Cauchy’s many theories).
We call σ a stress tensor, with σ(X , t) ∈ TxBt ⊗ TxBt .
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Continuum Blob Mechanics

The residual stress tensor τ = σ, when all external load is
removed.

τ · n

−τ · n

To incorporate the residual stress τ into the mechanics, we use the
above as a reference state.
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Continuum Blob Mechanics

The circumferential stress in the cross section of an artery:

(a) is unloaded, (b) is loaded (assuming isotropy).



Assumptions of Elasticity
The usual laws of physics alone are not enough to determine the
stress σ in terms of χ and τ .

We need to make some
assumptions about the potential energy density function Ŵ , with
W (X , t) = Ŵ (χ, τ ).

Assumption of History Independance

Ŵ is independent of the past of χ(·, t). That is for time t,
W (X , t) depends on χ(·, t) and τ (·). ( Much like a spring )

Assumption of Locality

W (X , t) can be completely determined by any neighbordhood of
χ(X , t) and τ (X ). W depends only on the local stretch and pull.

The result W (X , t) = Ŵ (C(X , t), τ (X )), where
C(X , t) = DχT (X , t)Dχ(X , t) and

σ(X , t) = 2ρDχ(X , t)
∂Ŵ

∂C
(C(X , t), τ (X ))DχT (X , t).
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∂Ŵ

∂C
(C(X , t), τ (X ))DχT (X , t).



Assumptions of Elasticity

Assumption of History Independance
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A well posed problem (hopefully)

ρχ̈ = div σ ( Equation of Motion )

σ = 2ρDχ
∂Ŵ

∂C
DχT

(Constitutive Assumption)

σ(X , t) = F1(X ) for X ∈ ∂B ( Boundary Conditions)

We assume given the initial B along with its physical attributes,
including the residual stress tensor τ .

What remains is to specify the dependance of Ŵ on C and τ ...
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Squeezing a Donut

For a residually stressed body it is not so clear
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Isotropic Invariants
Independent of a rotation of the reference configuration:

Ŵ (C, 0) = Ŵ (QTCQ, 0), (C = DχTDχ)

for any QTQ = I. Hence we can diagonalize QTCQ, so that

Ŵ (C, 0) = Ŵ
((

λ1 0 0
0 λ2 0
0 0 λ3

)
, 0
)

= Ψ(tr C, (tr C)2 − tr C2, detC).

where

tr C = λ1 + λ2 + λ3,

(tr C)2 − tr C2 = λ1λ2 + λ2λ3 + λ3λ1 − 3

detC = λ1λ2λ3.

One successful expansion

Ŵ (C, 0) = C1tr C + C2((tr C)2 − tr C2) + C3 detC.
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Isotropic Invariants

Still independent of a rotation of the reference configuration:

Ŵ (C, τ ) = Ŵ (QTCQ,QTτQ),

One possible set of independent invariants [Shams et al. (2011)] is

tr C, (tr C)2 − tr C2, detC,

tr τ , tr τ 2, tr τ 3,

tr (τC), tr (τC2), tr (τ 2C), tr (τ 2C2).

A total of ten invariants! Too many constants to fit to
experimental data:
W = C1tr C + C2((tr C)2 − tr C2) + C3 detC + T1tr τ + T2tr τ 2..

Which should be used/dropped (warnings from Anisotropy)?
What expansion to use?



Isotropic Invariants

Still independent of a rotation of the reference configuration:
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Ŵ (C, τ ) = Ŵ (QTCQ,QTτQ),

One possible set of independent invariants [Shams et al. (2011)] is

tr C, (tr C)2 − tr C2, detC,

tr τ , tr τ 2, tr τ 3,

tr (τC), tr (τC2), tr (τ 2C), tr (τ 2C2).

A total of ten invariants! Too many constants to fit to
experimental data:
W = C1tr C + C2((tr C)2 − tr C2) + C3 detC + T1tr τ + T2tr τ 2..

Which should be used/dropped (warnings from Anisotropy)?
What expansion to use?



Isotropic Invariants

Still independent of a rotation of the reference configuration:
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A Geometric Fix

↓ Cut and check. ↓ Guess Wc ↓ Fit Data.
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(
C̃ · C

)
!



A Geometric Fix

↓ Cut and check. ↓ Guess Wc ↓ Fit Data.

- 3 - 2 - 1 0 1 2 3

- 3

- 2

- 1

0

1

2

3

- 2 - 1 0 1 2 3

- 2

- 1

0

1

2

- 3 - 2 - 1 0 1 2 3
- 3

- 2

- 1

0

1

2

3

↘ C̃↗

↘ C↗

So we get energy as W (C, τ ) = WC

(
C̃ · C

)
!



A Geometric Fix

↓ Cut and check. ↓ Guess Wc ↓ Fit Data.

- 3 - 2 - 1 0 1 2 3

- 3

- 2

- 1

0

1

2

3

- 2 - 1 0 1 2 3

- 2

- 1

0

1

2

- 3 - 2 - 1 0 1 2 3
- 3

- 2

- 1

0

1

2

3

↘ C̃↗ ↘ C↗

So we get energy as W (C, τ ) = WC

(
C̃ · C

)
!



A Geometric Fix

↓ Cut and check. ↓ Guess Wc ↓ Fit Data.

- 3 - 2 - 1 0 1 2 3

- 3

- 2

- 1

0

1

2

3

- 2 - 1 0 1 2 3

- 2

- 1

0

1

2

- 3 - 2 - 1 0 1 2 3
- 3

- 2

- 1

0

1

2

3

↘ C̃↗ ↘ C↗

So we get energy as W (C, τ ) = WC

(
C̃ · C

)
!



A Geometric Fix

↓ Cut and check.

↓ Guess Wc ↓ Fit Data.

- 3 - 2 - 1 0 1 2 3

- 3

- 2

- 1

0

1

2

3

- 2 - 1 0 1 2 3

- 2

- 1

0

1

2

- 3 - 2 - 1 0 1 2 3
- 3

- 2

- 1

0

1

2

3

↘ C̃↗ ↘ C↗

So we get energy as W (C, τ ) = WC

(
C̃ · C

)
!



A Geometric Fix

↓ Cut and check. ↓ Guess Wc

↓ Fit Data.

- 3 - 2 - 1 0 1 2 3

- 3

- 2

- 1

0

1

2

3

- 2 - 1 0 1 2 3

- 2

- 1

0

1

2

- 3 - 2 - 1 0 1 2 3
- 3

- 2

- 1

0

1

2

3

↘ C̃↗ ↘ C↗

So we get energy as W (C, τ ) = WC

(
C̃ · C

)
!



A Geometric Fix

↓ Cut and check. ↓ Guess Wc ↓ Fit Data.

- 3 - 2 - 1 0 1 2 3

- 3

- 2

- 1

0

1

2

3

- 2 - 1 0 1 2 3

- 2

- 1

0

1

2

- 3 - 2 - 1 0 1 2 3
- 3

- 2

- 1

0

1

2

3

↘ C̃↗ ↘ C↗

So we get energy as W (C, τ ) = WC

(
C̃ · C

)
!



A Geometric Fix

- 3 - 2 - 1 0 1 2 3

- 3

- 2

- 1

0

1

2

3

χ̃(R,Θ)

q
(r(R),Θ(θ))

- 2 - 1 0 1 2 3

- 2

- 1

0

1

2

A ≤ R ≤ B

0 ≤ Θ ≤ Θ0

a ≤ r(R) ≤ b

0 ≤ θ(Θ) ≤ 2π

Incompressibility means
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rR 0
0 θΘ

)
= 1 =⇒ rRθΘr/R = 1

=⇒ θ(Θ) = 2π
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Θ and r(R) =
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a2 + Θ0
2π (R2 − A2)
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Θ and r(R) =
√

a2 + Θ0
2π (R2 − A2)

Simple: WC (C̃) = µ
2 (tr C̃− 3) =⇒ τ = µρDχ̃∂tr C̃

∂C̃
Dχ̃T − p(R)I

implying that

τ =

(
τrr 0
0 τθθ

)
=

(
r2
R(R)− p(R) 0

0 θ2
Θ(Θ)/R2 − p(R)

)
,

τrr (A) = r2
R(A)− p(A) = 0 = τrr (B) = r2

R(B)− p(B).

Plug into equilibrium equation

div τ = 0 =⇒ r/rR ∂Rτrr + τrr − τθθ = 0,

solve for p(R).
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.

(remember C = DχTDχ ).

Though we assume there is a virtual stress-free state, that gives C̃,

we don’t know what it looks like!
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Stress τ as Input

To find B̃(τ ):

τ = µρDχ̃
∂tr C̃

∂C̃
Dχ̃T − pI = µB̃− pI,

Assume B̃ incompressible, then after some algebra an inversion is
possible. Plain strain example:

B̃ =
1

µ
τ +

1

2µ

(
−tr τ +

√
4µ2 + (tr τ )2 − 4 det τ

)
I,

then using W (C, τ ) = WC (BB̃), leading to

W (C, τ ) =
1

2
tr(Bτ )+

1

4
trB

(
−trτ +

√
4µ2 + (tr τ )2 − 4 det τ

)
−µ
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For a given stress field τ

finding a stress-free state embedded in R3 is like
finding a needle in a nine dimensional haystack.

Is it necessary that the vitural state be an embedding in R3?
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Where to now?
This method takes a measured τ and produces W (C, τ ).

However it assumes a stress-free state living in some space.
Associated to a family of possible maps χ̃.

Should we only except χ̃ where the stress-free state is embedded
in R3?

Should the riemannian metric G̃ lead to a torsion-free
connection?

How about the mixed derivatives ∂X̃i X̃j
χ̃ = ∂X̃j X̃i

χ̃?
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Thanks for listening and hope you enjoyed the talk!
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