The Potential Energy of Residually Stressed Solids

Author:
Artur L. Gower

Co-Author:
Dr. Pasquale Ciarletta

Supervisor:
prof. Michel Destrade

National University of Ireland Galway

Measurement from hell

Measurement from hell

How do we deal with this? Energy $W(\mathbf{B}, \boldsymbol{\tau})$

Continuum Blob Mechanics

We apply the laws of physics to a continuous blob which is moving through space.

Continuum Blob Mechanics

We apply the laws of physics to a continuous blob which is moving through space.

With each position $x=\chi(X, t)$ we associate denisties such as mass $\rho(x, t)$ and stress $\mathbf{T}^{(\mathbf{n})}(x, t)$.

Continuum Blob Mechanics

To describe the forces $\mathbf{F}_{1}(\mathbf{X}, t), \mathbf{F}_{2}(\mathbf{X}, t), \mathbf{T}^{(\mathbf{n})}(\mathbf{X}, t), \mathbf{n} \in T_{x} \mathcal{B}_{t}$, we make an imaginary slice

Continuum Blob Mechanics

To describe the forces $\mathbf{F}_{1}(\mathbf{X}, t), \mathbf{F}_{2}(\mathbf{X}, t), \mathbf{T}^{(\mathbf{n})}(\mathbf{X}, t), \mathbf{n} \in T_{x} \mathcal{B}_{t}$, we make an imaginary slice

The forces \mathbf{F}_{1} and \mathbf{F}_{2} may be determined by Boundary conditions.

Continuum Blob Mechanics

To describe the forces $\mathbf{F}_{1}(\mathbf{X}, t), \mathbf{F}_{2}(\mathbf{X}, t), \mathbf{T}^{(\mathbf{n})}(\mathbf{X}, t), \mathbf{n} \in T_{x} \mathcal{B}_{t}$, we make an imaginary slice

The forces \mathbf{F}_{1} and \mathbf{F}_{2} may be determined by Boundary conditions. While the internal stress $\mathbf{T}^{(\mathbf{n})}$ can be written as $\mathbf{T}^{(\mathbf{n})}=\boldsymbol{\sigma} \cdot \mathbf{n}$.
(One of Cauchy's many theories).
\square We call σ a stress tensor, with $\sigma(X, t) \in T_{x} \mathcal{B}_{t} \otimes T_{x} \mathcal{B}_{t}$.

Continuum Blob Mechanics

The residual stress tensor $\boldsymbol{\tau}=\boldsymbol{\sigma}$, when all external load is removed.

Continuum Blob Mechanics

The residual stress tensor $\boldsymbol{\tau}=\boldsymbol{\sigma}$, when all external load is removed.

To incorporate the residual stress τ into the mechanics, we use the above as a reference state.

Continuum Blob Mechanics

The circumferential stress in the cross section of an artery:

(a) is unloaded, (b) is loaded (assuming isotropy).

Assumptions of Elasticity

The usual laws of physics alone are not enough to determine the stress σ in terms of χ and $\boldsymbol{\tau}$.

Assumptions of Elasticity

The usual laws of physics alone are not enough to determine the stress $\boldsymbol{\sigma}$ in terms of χ and $\boldsymbol{\tau}$. We need to make some assumptions about the potential energy density function \hat{W}, with $W(X, t)=\hat{W}(\chi, \boldsymbol{\tau})$.

Assumptions of Elasticity

The usual laws of physics alone are not enough to determine the stress σ in terms of χ and $\boldsymbol{\tau}$. We need to make some assumptions about the potential energy density function \hat{W}, with $W(X, t)=\hat{W}(\chi, \boldsymbol{\tau})$.
Assumption of History Independance \hat{W} is independent of the past of $\chi(\cdot, t)$. That is for time t, $W(X, t)$ depends on $\chi(\cdot, t)$ and $\tau(\cdot)$. (Much like a spring)

Assumptions of Elasticity

The usual laws of physics alone are not enough to determine the stress σ in terms of χ and $\boldsymbol{\tau}$. We need to make some assumptions about the potential energy density function \hat{W}, with $W(X, t)=\hat{W}(\chi, \boldsymbol{\tau})$.
Assumption of History Independance \hat{W} is independent of the past of $\chi(\cdot, t)$. That is for time t, $W(X, t)$ depends on $\chi(\cdot, t)$ and $\tau(\cdot)$. (Much like a spring)

Assumption of Locality

$W(X, t)$ can be completely determined by any neighbordhood of $\chi(X, t)$ and $\tau(X)$. W depends only on the local stretch and pull.

Assumptions of Elasticity

Assumption of History Independance \hat{W} is independent of the past of $\chi(\cdot, t)$. That is for time t, $W(X, t)$ depends on $\chi(\cdot, t)$ and $\tau(\cdot)$. (Much like a spring)

Assumption of Locality
$W(X, t)$ can be completely determined by any neighbordhood of
$\chi(X, t)$ and $\tau(X)$. W depends only on the local stretch and pull.
The result $W(X, t)=\hat{W}(\mathbf{C}(X, t), \tau(X))$, where
$\mathbf{C}(X, t)=\mathbf{D} \chi^{T}(X, t) \mathbf{D} \chi(X, t)$ and

$$
\sigma(X, t)=2 \rho \mathbf{D} \chi(X, t) \frac{\partial \hat{W}}{\partial \mathbf{C}}(\mathbf{C}(X, t), \tau(X)) \mathbf{D} \chi^{T}(X, t)
$$

A well posed problem (hopefully)

$$
\rho \ddot{\chi}=\operatorname{div} \sigma \quad \text { (Equation of Motion })
$$

A well posed problem (hopefully)

$$
\begin{gathered}
\rho \ddot{\chi}=\operatorname{div} \boldsymbol{\sigma} \quad \text { (Equation of Motion) } \\
\boldsymbol{\sigma}=2 \rho \mathbf{D} \chi \frac{\partial \hat{W}}{\partial \mathbf{C}} \mathbf{D} \chi^{T} \quad \text { (Constitutive Assumption) }
\end{gathered}
$$

A well posed problem (hopefully)

$$
\begin{gathered}
\rho \ddot{\chi}=\operatorname{div} \boldsymbol{\sigma} \quad(\text { Equation of Motion) } \\
\boldsymbol{\sigma}=2 \rho \mathbf{D} \chi \frac{\partial \hat{W}}{\partial \mathbf{C}} \mathbf{D}^{T}{ }_{\text {(Constitutive Assumption) }} \\
\sigma(X, t)=\mathbf{F}_{1}(X) \text { for } X \in \partial \mathcal{B} \text { (Boundary Conditions) } \text {) }
\end{gathered}
$$

A well posed problem (hopefully)

$$
\begin{gathered}
\rho \ddot{\chi}=\operatorname{div} \boldsymbol{\sigma} \quad(\text { Equation of Motion) } \\
\boldsymbol{\sigma}=2 \rho \mathbf{D} \chi \frac{\partial \hat{W}}{\partial \mathbf{C}} \mathbf{D}^{T}{ }_{(\text {Constitutive Assumption) }} \\
\boldsymbol{\sigma}(X, t)=\mathbf{F}_{1}(X) \text { for } X \in \partial \mathcal{B} \text { (Boundary Conditions) } \text {. }
\end{gathered}
$$

We assume given the initial \mathcal{B} along with its physical attributes, including the residual stress tensor $\boldsymbol{\tau}$.

A well posed problem (hopefully)

$$
\begin{gathered}
\rho \ddot{\chi}=\operatorname{div} \boldsymbol{\sigma}{ }_{(\text {Equation of Motion) }} \\
\boldsymbol{\sigma}=2 \rho \mathbf{D} \chi \frac{\partial \hat{W}}{\partial \mathbf{C}} \mathbf{D}^{\top}{ }_{\text {(Constitutive Assumption) }} \\
\boldsymbol{\sigma}(X, t)=\mathbf{F}_{1}(X) \text { for } X \in \partial \mathcal{B}{ }_{\text {(Boundary Conditions) }}
\end{gathered}
$$

We assume given the initial \mathcal{B} along with its physical attributes, including the residual stress tensor $\boldsymbol{\tau}$.
\square What remains is to specify the dependance of \hat{W} on \mathbf{C} and $\boldsymbol{\tau} \ldots$

Squeezing a Donut

Without the residual stress τ we know that

Squeezing a Donut

Without the residual stress τ we know that

Squeezing a Donut

Without the residual stress τ we know that

Squeezing a Donut

Without the residual stress τ we know that

\longrightarrow Potential energy $\hat{W}(\mathbf{C}, \mathbf{0})$ increases \longrightarrow

Squeezing a Donut

For a residually stressed body it is not so clear

Squeezing a Donut

For a residually stressed body it is not so clear

Squeezing a Donut

For a residually stressed body it is not so clear

Squeezing a Donut

For a residually stressed body it is not so clear

\longrightarrow how does the potential energy $\hat{W}(\mathbf{C}, \boldsymbol{\tau})$ change?

Isotropic Invariants

Independent of a rotation of the reference configuration:

Isotropic Invariants

Independent of a rotation of the reference configuration:

$$
\begin{aligned}
& \qquad \hat{W}(\mathbf{C}, \mathbf{0})=\hat{W}\left(\mathbf{Q}^{\top} \mathbf{C} \mathbf{Q}, \mathbf{0}\right), \quad\left(\mathbf{C}=\mathbf{D}^{\top} \mathbf{D}_{\chi}\right) \\
& \text { for any } \mathbf{Q}^{\top} \mathbf{Q}=\mathbf{I} .
\end{aligned}
$$

Isotropic Invariants

Independent of a rotation of the reference configuration:

$$
\hat{W}(\mathbf{C}, \mathbf{0})=\hat{W}\left(\mathbf{Q}^{T} \mathbf{C} \mathbf{Q}, \mathbf{0}\right), \quad\left(\mathbf{C}=\mathbf{D}^{T} \mathbf{D}^{T} \chi\right)
$$

for any $\mathbf{Q}^{T} \mathbf{Q}=\mathbf{I}$. Hence we can diagonalize $\mathbf{Q}^{T} \mathbf{C Q}$, so that

$$
\hat{W}(\mathbf{C}, \mathbf{0})=\hat{W}\left(\left(\begin{array}{ccc}
\lambda_{1} & 0 & 0 \\
0 & \lambda_{2} & 0 \\
0 & 0 & \lambda_{3}
\end{array}\right), \mathbf{0}\right)=\Psi\left(\operatorname{tr} \mathbf{C},(\operatorname{tr} \mathbf{C})^{2}-\operatorname{tr} \mathbf{C}^{2}, \operatorname{det} \mathbf{C}\right) .
$$

where

$$
\begin{gathered}
\operatorname{tr} \mathbf{C}=\lambda_{1}+\lambda_{2}+\lambda_{3} \\
(\operatorname{tr} \mathbf{C})^{2}-\operatorname{tr} \mathbf{C}^{2}=\lambda_{1} \lambda_{2}+\lambda_{2} \lambda_{3}+\lambda_{3} \lambda_{1}-3 \\
\operatorname{det} \mathbf{C}=\lambda_{1} \lambda_{2} \lambda_{3}
\end{gathered}
$$

Isotropic Invariants

Independent of a rotation of the reference configuration:

$$
\hat{W}(\mathbf{C}, \mathbf{0})=\hat{W}\left(\mathbf{Q}^{\top} \mathbf{C} \mathbf{Q}, \mathbf{0}\right), \quad\left(\mathbf{C}=\mathbf{D}^{\top}{ }^{\top} \mathbf{D} \chi\right)
$$

for any $\mathbf{Q}^{\top} \mathbf{Q}=\mathbf{I}$. Hence we can diagonalize $\mathbf{Q}^{\top} \mathbf{C} \mathbf{Q}$, so that

$$
\hat{W}(\mathbf{C}, \mathbf{0})=\hat{W}\left(\left(\begin{array}{ccc}
\lambda_{1} & 0 & 0 \\
0 & \lambda_{2} & 0 \\
0 & 0 & \lambda_{3}
\end{array}\right), \mathbf{0}\right)=\Psi\left(\operatorname{tr} \mathbf{C},(\operatorname{tr} \mathbf{C})^{2}-\operatorname{tr} \mathbf{C}^{2}, \operatorname{det} \mathbf{C}\right) .
$$

where

$$
\begin{aligned}
\operatorname{tr} \mathbf{C} & =\lambda_{1}+\lambda_{2}+\lambda_{3}, \\
(\operatorname{tr} \mathbf{C})^{2}-\operatorname{tr} \mathbf{C}^{2} & =\lambda_{1} \lambda_{2}+\lambda_{2} \lambda_{3}+\lambda_{3} \lambda_{1}-3 \\
\operatorname{det} \mathbf{C} & =\lambda_{1} \lambda_{2} \lambda_{3} .
\end{aligned}
$$

One successful expansion

$$
\hat{W}(\mathbf{C}, \mathbf{0})=C_{1} \operatorname{tr} \mathbf{C}+C_{2}\left((\operatorname{tr} \mathbf{C})^{2}-\operatorname{tr} \mathbf{C}^{2}\right)+C_{3} \operatorname{det} \mathbf{C} .
$$

Isotropic Invariants

Still independent of a rotation of the reference configuration:

Isotropic Invariants

Still independent of a rotation of the reference configuration:

$$
\hat{W}(\mathbf{C}, \boldsymbol{\tau})=\hat{W}\left(\mathbf{Q}^{T} \mathbf{C} \mathbf{Q}, \mathbf{Q}^{T} \boldsymbol{\tau} \mathbf{Q}\right)
$$

Isotropic Invariants

Still independent of a rotation of the reference configuration:

$$
\hat{W}(\mathbf{C}, \boldsymbol{\tau})=\hat{W}\left(\mathbf{Q}^{T} \mathbf{C} \mathbf{Q}, \mathbf{Q}^{T} \boldsymbol{\tau} \mathbf{Q}\right)
$$

One possible set of independent invariants [Shams et al. (2011)] is

$$
\begin{gathered}
\operatorname{tr} \mathbf{C},(\operatorname{tr} \mathbf{C})^{2}-\operatorname{tr} \mathbf{C}^{2}, \operatorname{det} \mathbf{C} \\
\operatorname{tr} \boldsymbol{\tau}, \operatorname{tr} \boldsymbol{\tau}^{2}, \operatorname{tr} \boldsymbol{\tau}^{3}, \\
\operatorname{tr}(\boldsymbol{\tau} \mathbf{C}), \operatorname{tr}\left(\boldsymbol{\tau} \mathbf{C}^{2}\right), \operatorname{tr}\left(\boldsymbol{\tau}^{2} \mathbf{C}\right), \operatorname{tr}\left(\boldsymbol{\tau}^{2} \mathbf{C}^{2}\right)
\end{gathered}
$$

Isotropic Invariants

Still independent of a rotation of the reference configuration:

$$
\hat{W}(\mathbf{C}, \boldsymbol{\tau})=\hat{W}\left(\mathbf{Q}^{T} \mathbf{C} \mathbf{Q}, \mathbf{Q}^{T} \boldsymbol{\tau} \mathbf{Q}\right)
$$

One possible set of independent invariants [Shams et al. (2011)] is

$$
\begin{gathered}
\operatorname{tr} \mathbf{C},(\operatorname{tr} \mathbf{C})^{2}-\operatorname{tr} \mathbf{C}^{2}, \operatorname{det} \mathbf{C} \\
\operatorname{tr} \boldsymbol{\tau}, \operatorname{tr} \boldsymbol{\tau}^{2}, \operatorname{tr} \boldsymbol{\tau}^{3}, \\
\operatorname{tr}(\boldsymbol{\tau} \mathbf{C}), \operatorname{tr}\left(\boldsymbol{\tau} \mathbf{C}^{2}\right), \operatorname{tr}\left(\boldsymbol{\tau}^{2} \mathbf{C}\right), \operatorname{tr}\left(\boldsymbol{\tau}^{2} \mathbf{C}^{2}\right)
\end{gathered}
$$

A total of ten invariants!

Isotropic Invariants

Still independent of a rotation of the reference configuration:

$$
\hat{W}(\mathbf{C}, \boldsymbol{\tau})=\hat{W}\left(\mathbf{Q}^{T} \mathbf{C} \mathbf{Q}, \mathbf{Q}^{T} \boldsymbol{\tau} \mathbf{Q}\right)
$$

One possible set of independent invariants [Shams et al. (2011)] is

$$
\begin{gathered}
\operatorname{tr} \mathbf{C},(\operatorname{tr} \mathbf{C})^{2}-\operatorname{tr} \mathbf{C}^{2}, \operatorname{det} \mathbf{C} \\
\operatorname{tr} \boldsymbol{\tau}, \operatorname{tr} \boldsymbol{\tau}^{2}, \operatorname{tr} \boldsymbol{\tau}^{3} \\
\operatorname{tr}(\boldsymbol{\tau} \mathbf{C}), \operatorname{tr}\left(\boldsymbol{\tau} \mathbf{C}^{2}\right), \operatorname{tr}\left(\boldsymbol{\tau}^{2} \mathbf{C}\right), \operatorname{tr}\left(\boldsymbol{\tau}^{2} \mathbf{C}^{2}\right)
\end{gathered}
$$

A total of ten invariants! Too many constants to fit to experimental data:

Isotropic Invariants

Still independent of a rotation of the reference configuration:

$$
\hat{W}(\mathbf{C}, \boldsymbol{\tau})=\hat{W}\left(\mathbf{Q}^{T} \mathbf{C} \mathbf{Q}, \mathbf{Q}^{T} \boldsymbol{\tau} \mathbf{Q}\right)
$$

One possible set of independent invariants [Shams et al. (2011)] is

$$
\begin{gathered}
\operatorname{tr} \mathbf{C},(\operatorname{tr} \mathbf{C})^{2}-\operatorname{tr} \mathbf{C}^{2}, \operatorname{det} \mathbf{C} \\
\operatorname{tr} \boldsymbol{\tau}, \operatorname{tr} \boldsymbol{\tau}^{2}, \operatorname{tr} \boldsymbol{\tau}^{3}, \\
\operatorname{tr}(\boldsymbol{\tau} \mathbf{C}), \operatorname{tr}\left(\boldsymbol{\tau} \mathbf{C}^{2}\right), \operatorname{tr}\left(\boldsymbol{\tau}^{2} \mathbf{C}\right), \operatorname{tr}\left(\boldsymbol{\tau}^{2} \mathbf{C}^{2}\right)
\end{gathered}
$$

A total of ten invariants! Too many constants to fit to experimental data:
$W=C_{1} \operatorname{tr} \mathbf{C}+C_{2}\left((\operatorname{tr} \mathbf{C})^{2}-\operatorname{tr} \mathbf{C}^{2}\right)+C_{3} \operatorname{det} \mathbf{C}+T_{1} \operatorname{tr} \boldsymbol{\tau}+T_{2} \operatorname{tr} \boldsymbol{\tau}^{2} .$.

Isotropic Invariants

Still independent of a rotation of the reference configuration:

$$
\hat{W}(\mathbf{C}, \boldsymbol{\tau})=\hat{W}\left(\mathbf{Q}^{T} \mathbf{C} \mathbf{Q}, \mathbf{Q}^{T} \boldsymbol{\tau} \mathbf{Q}\right)
$$

One possible set of independent invariants [Shams et al. (2011)] is

$$
\begin{gathered}
\operatorname{tr} \mathbf{C},(\operatorname{tr} \mathbf{C})^{2}-\operatorname{tr} \mathbf{C}^{2}, \operatorname{det} \mathbf{C} \\
\operatorname{tr} \boldsymbol{\tau}, \operatorname{tr} \boldsymbol{\tau}^{2}, \operatorname{tr} \boldsymbol{\tau}^{3}, \\
\operatorname{tr}(\boldsymbol{\tau} \mathbf{C}), \operatorname{tr}\left(\boldsymbol{\tau} \mathbf{C}^{2}\right), \operatorname{tr}\left(\boldsymbol{\tau}^{2} \mathbf{C}\right), \operatorname{tr}\left(\boldsymbol{\tau}^{2} \mathbf{C}^{2}\right)
\end{gathered}
$$

A total of ten invariants! Too many constants to fit to experimental data: $W=C_{1} \operatorname{tr} \mathbf{C}+C_{2}\left((\operatorname{tr} \mathbf{C})^{2}-\operatorname{tr} \mathbf{C}^{2}\right)+C_{3} \operatorname{det} \mathbf{C}+T_{1} \operatorname{tr} \boldsymbol{\tau}+T_{2} \operatorname{tr} \boldsymbol{\tau}^{2} .$.
\square Which should be used/dropped (warnings from Anisotropy)?

Isotropic Invariants

Still independent of a rotation of the reference configuration:

$$
\hat{W}(\mathbf{C}, \boldsymbol{\tau})=\hat{W}\left(\mathbf{Q}^{T} \mathbf{C} \mathbf{Q}, \mathbf{Q}^{T} \boldsymbol{\tau} \mathbf{Q}\right)
$$

One possible set of independent invariants [Shams et al. (2011)] is

$$
\begin{gathered}
\operatorname{tr} \mathbf{C},(\operatorname{tr} \mathbf{C})^{2}-\operatorname{tr} \mathbf{C}^{2}, \operatorname{det} \mathbf{C} \\
\operatorname{tr} \boldsymbol{\tau}, \operatorname{tr} \boldsymbol{\tau}^{2}, \operatorname{tr} \boldsymbol{\tau}^{3}, \\
\operatorname{tr}(\boldsymbol{\tau} \mathbf{C}), \operatorname{tr}\left(\boldsymbol{\tau} \mathbf{C}^{2}\right), \operatorname{tr}\left(\boldsymbol{\tau}^{2} \mathbf{C}\right), \operatorname{tr}\left(\boldsymbol{\tau}^{2} \mathbf{C}^{2}\right)
\end{gathered}
$$

A total of ten invariants! Too many constants to fit to experimental data: $W=C_{1} \operatorname{tr} \mathbf{C}+C_{2}\left((\operatorname{tr} \mathbf{C})^{2}-\operatorname{tr} \mathbf{C}^{2}\right)+C_{3} \operatorname{det} \mathbf{C}+T_{1} \operatorname{tr} \boldsymbol{\tau}+T_{2} \operatorname{tr} \boldsymbol{\tau}^{2} .$.
\square Which should be used/dropped (warnings from Anisotropy)? What expansion to use?

A Geometric Fix

A Geometric Fix

A Geometric Fix

A Geometric Fix

\square So we get energy as $W(\mathbf{C}, \boldsymbol{\tau})=W_{C}(\tilde{\mathbf{c}} \cdot \mathbf{c})$!

A Geometric Fix

\downarrow Cut and check.

\square So we get energy as $W(\mathbf{C}, \tau)=W_{C}(\tilde{\mathbf{c}} \cdot \mathbf{c})$!

A Geometric Fix

\downarrow Cut and check. $\quad \downarrow$ Guess W_{c}

\square So we get energy as $W(\mathbf{C}, \boldsymbol{\tau})=W_{C}(\tilde{\mathbf{C}} \cdot \mathbf{C})$!

A Geometric Fix

\downarrow Cut and check. $\quad \downarrow$ Guess $W_{c} \quad \downarrow$ Fit Data.

\square So we get energy as $W(\mathbf{C}, \boldsymbol{\tau})=W_{C}(\tilde{\mathbf{c}} \cdot \mathbf{c})$!

A Geometric Fix

$\xrightarrow[\tilde{\chi}(R, \Theta)]{ }$

A Geometric Fix

$$
\begin{gathered}
A \leq R \leq B \\
0 \leq \Theta \leq \Theta_{0}
\end{gathered}
$$

A Geometric Fix

$\xrightarrow[\tilde{\chi}(R, \Theta)]{ }$
 II

$A \leq R \leq B \quad(r(R), \Theta(\theta))$

$$
0 \leq \Theta \leq \Theta_{0}
$$

A Geometric Fix

$A \leq R \leq B$
$0 \leq \Theta \leq \Theta_{0}$

$(r(R), \Theta(\theta))$

A Geometric Fix

$A \leq R \leq B \quad(r(R), \Theta(\theta))$

$$
0 \leq \Theta \leq \Theta_{0}
$$

Incompressibility means

$$
\operatorname{det} \mathbf{D} \tilde{\chi}=1 \Longrightarrow \operatorname{det}\left(\begin{array}{cc}
r_{R} & 0 \\
0 & \theta_{\Theta}
\end{array}\right)=1
$$

A Geometric Fix

Incompressibility means

$$
\operatorname{det} \mathbf{D} \tilde{\chi}=1 \Longrightarrow \operatorname{det}\left(\begin{array}{cc}
r_{R} & 0 \\
0 & \theta_{\Theta}
\end{array}\right)=1 \quad \Longrightarrow \quad r_{R} \theta_{\Theta} r / R=1
$$

A Geometric Fix

Incompressibility means

$$
\begin{gathered}
\operatorname{det} \mathbf{D} \tilde{\chi}=1 \Longrightarrow \operatorname{det}\left(\begin{array}{cc}
r_{R} & 0 \\
0 & \theta_{\Theta}
\end{array}\right)=1 \quad \Longrightarrow r_{R} \theta_{\Theta} r / R=1 \\
\Longrightarrow \quad \theta(\Theta)=\frac{2 \pi}{\Theta_{0}} \Theta \text { and } r(R)=\sqrt{a^{2}+\frac{\Theta_{0}}{2 \pi}\left(R^{2}-A^{2}\right)}
\end{gathered}
$$

A Geometric Fix

$$
\theta(\Theta)=\frac{2 \pi}{\Theta_{0}} \Theta \text { and } r(R)=\sqrt{a^{2}+\frac{\Theta_{0}}{2 \pi}\left(R^{2}-A^{2}\right)}
$$

A Geometric Fix

$$
\theta(\Theta)=\frac{2 \pi}{\Theta_{0}} \Theta \text { and } r(R)=\sqrt{a^{2}+\frac{\Theta_{0}}{2 \pi}\left(R^{2}-A^{2}\right)}
$$

Simple: $W_{C}(\tilde{\mathbf{C}})=\frac{\mu}{2}(\operatorname{tr} \tilde{\mathbf{C}}-3) \Longrightarrow \boldsymbol{\tau}=\mu \rho \mathbf{D} \tilde{\chi} \frac{\partial \operatorname{tr} \tilde{\tau}}{\partial \tilde{\mathbf{c}}} \mathbf{D} \tilde{\chi}^{T}-p(R) \mathbf{I}$

A Geometric Fix

$$
\theta(\Theta)=\frac{2 \pi}{\Theta_{0}} \Theta \text { and } r(R)=\sqrt{a^{2}+\frac{\Theta_{0}}{2 \pi}\left(R^{2}-A^{2}\right)}
$$

Simple: $W_{C}(\tilde{\mathbf{C}})=\frac{\mu}{2}(\operatorname{tr} \tilde{\mathbf{C}}-3) \Longrightarrow \boldsymbol{\tau}=\mu \rho \mathbf{D} \tilde{\chi} \frac{\partial \operatorname{tr} \tilde{c}}{\partial \tilde{\mathbf{c}}} \mathbf{D} \tilde{\chi}^{T}-p(R) \mathbf{I}$ implying that

$$
\tau=\left(\begin{array}{cc}
\tau_{r r} & 0 \\
0 & \tau_{\theta \theta}
\end{array}\right)=\left(\begin{array}{cc}
r_{R}^{2}(R)-p(R) & 0 \\
0 & \theta_{\Theta}^{2}(\Theta) / R^{2}-p(R)
\end{array}\right),
$$

A Geometric Fix

$$
\theta(\Theta)=\frac{2 \pi}{\Theta_{0}} \Theta \text { and } r(R)=\sqrt{a^{2}+\frac{\Theta_{0}}{2 \pi}\left(R^{2}-A^{2}\right)}
$$

Simple: $W_{C}(\tilde{\mathbf{C}})=\frac{\mu}{2}(\operatorname{tr} \tilde{\mathbf{C}}-3) \Longrightarrow \boldsymbol{\tau}=\mu \rho \mathbf{D} \tilde{\chi} \frac{\partial \operatorname{tr} \tilde{c}}{\partial \tilde{\mathbf{c}}} \mathbf{D} \tilde{\chi}^{T}-p(R) \mathbf{I}$ implying that

$$
\begin{aligned}
\tau & =\left(\begin{array}{cc}
\tau_{r r} & 0 \\
0 & \tau_{\theta \theta}
\end{array}\right)=\left(\begin{array}{cc}
r_{R}^{2}(R)-p(R) & 0 \\
0 & \theta_{\Theta}^{2}(\Theta) / R^{2}-p(R)
\end{array}\right), \\
\tau_{r r}(A) & =r_{R}^{2}(A)-p(A)=0=\tau_{r r}(B)=r_{R}^{2}(B)-p(B) .
\end{aligned}
$$

A Geometric Fix

$$
\theta(\Theta)=\frac{2 \pi}{\Theta_{0}} \Theta \text { and } r(R)=\sqrt{a^{2}+\frac{\Theta_{0}}{2 \pi}\left(R^{2}-A^{2}\right)}
$$

Simple: $W_{C}(\tilde{\mathbf{C}})=\frac{\mu}{2}(\operatorname{tr} \tilde{\mathbf{C}}-3) \Longrightarrow \boldsymbol{\tau}=\mu \rho \mathbf{D} \tilde{\chi} \frac{\partial \operatorname{tr} \tilde{c}}{\partial \tilde{\mathbf{C}}} \mathbf{D} \tilde{\chi}^{T}-p(R) \mathbf{I}$ implying that

$$
\begin{aligned}
\tau & =\left(\begin{array}{cc}
\tau_{r r} & 0 \\
0 & \tau_{\theta \theta}
\end{array}\right)=\left(\begin{array}{cc}
r_{R}^{2}(R)-p(R) & 0 \\
0 & \theta_{\Theta}^{2}(\Theta) / R^{2}-p(R)
\end{array}\right), \\
\tau_{r r}(A) & =r_{R}^{2}(A)-p(A)=0=\tau_{r r}(B)=r_{R}^{2}(B)-p(B) .
\end{aligned}
$$

Plug into equilibrium equation

$$
\operatorname{div} \boldsymbol{\tau}=0 \Longrightarrow r / r_{R} \partial_{R} \tau_{r r}+\tau_{r r}-\tau_{\theta \theta}=0
$$

solve for $p(R)$.

Stress τ as Input

Stress τ as Input

Stress τ as Input

Adopting

$$
\begin{gathered}
W(\mathbf{C}, \boldsymbol{\tau})=W_{C}(\tilde{\mathbf{C}} \mathbf{C})=\frac{\mu}{2}(\operatorname{tr}(\tilde{\mathbf{C}} \mathbf{C})-3)=\frac{\mu}{2}(\operatorname{tr}(\mathbf{B} \tilde{\mathbf{B}}(\boldsymbol{\tau}))-3) \\
\left(\text { remember } \mathbf{C}=\mathbf{D} \chi^{T} \mathbf{D} \chi\right)
\end{gathered}
$$

Stress τ as Input

Adopting
$W(\mathbf{C}, \boldsymbol{\tau})=W_{C}(\tilde{\mathbf{C}} \mathbf{C})=\frac{\mu}{2}(\operatorname{tr}(\tilde{\mathbf{C}} \mathbf{C})-3)=\frac{\mu}{2}(\operatorname{tr}(\mathbf{B} \tilde{\mathbf{B}}(\boldsymbol{\tau}))-3)$. (remember $\mathbf{C}=\mathbf{D}^{\top}{ }^{\top} \mathbf{D} \chi$).
\square Though we assume there is a virtual stress-free state, that gives $\tilde{\mathbf{C}}$, we don't know what it looks like!

Stress τ as Input
To find $\tilde{\mathbf{B}}(\boldsymbol{\tau})$:

$$
\boldsymbol{\tau}=\mu \rho \mathbf{D} \tilde{\chi} \frac{\partial \operatorname{tr} \tilde{\mathbf{C}}}{\partial \tilde{\mathbf{C}}} \mathbf{D} \tilde{\chi}^{T}-p \mathbf{I}=\mu \tilde{\mathbf{B}}-p \mathbf{I},
$$

Stress τ as Input

To find $\tilde{\mathbf{B}}(\boldsymbol{\tau})$:

$$
\boldsymbol{\tau}=\mu \rho \mathbf{D} \tilde{\chi} \frac{\partial \operatorname{tr} \tilde{\mathbf{C}}}{\partial \tilde{\mathbf{C}}} \mathbf{D} \tilde{\chi}^{T}-p \mathbf{I}=\mu \tilde{\mathbf{B}}-p \mathbf{I},
$$

Assume $\tilde{\mathbf{B}}$ incompressible, then after some algebra an inversion is possible.

Stress τ as Input

To find $\tilde{\mathbf{B}}(\boldsymbol{\tau})$:

$$
\boldsymbol{\tau}=\mu \rho \mathbf{D} \tilde{\chi} \frac{\partial \operatorname{tr} \tilde{\mathbf{C}}}{\partial \tilde{\mathbf{C}}} \mathbf{D} \tilde{\chi}^{T}-p \mathbf{I}=\mu \tilde{\mathbf{B}}-p \mathbf{I},
$$

Assume $\tilde{\mathbf{B}}$ incompressible, then after some algebra an inversion is possible. Plain strain example:

$$
\tilde{\mathbf{B}}=\frac{1}{\mu} \boldsymbol{\tau}+\frac{1}{2 \mu}\left(-\operatorname{tr} \boldsymbol{\tau}+\sqrt{4 \mu^{2}+(\operatorname{tr} \boldsymbol{\tau})^{2}-4 \operatorname{det} \boldsymbol{\tau}}\right) \mathbf{I},
$$

Stress τ as Input

To find $\tilde{\mathbf{B}}(\boldsymbol{\tau})$:

$$
\boldsymbol{\tau}=\mu \rho \mathbf{D} \tilde{\chi} \frac{\partial \operatorname{tr} \tilde{\mathbf{C}}}{\partial \tilde{\mathbf{C}}} \mathbf{D} \tilde{\chi}^{T}-p \mathbf{I}=\mu \tilde{\mathbf{B}}-p \mathbf{I},
$$

Assume $\tilde{\mathbf{B}}$ incompressible, then after some algebra an inversion is possible. Plain strain example:

$$
\tilde{\mathbf{B}}=\frac{1}{\mu} \boldsymbol{\tau}+\frac{1}{2 \mu}\left(-\operatorname{tr} \boldsymbol{\tau}+\sqrt{4 \mu^{2}+(\operatorname{tr} \boldsymbol{\tau})^{2}-4 \operatorname{det} \boldsymbol{\tau}}\right) \mathbf{I},
$$

then using $W(\mathbf{C}, \boldsymbol{\tau})=W_{C}(\mathbf{B} \tilde{\mathbf{B}})$, leading to
$W(\mathbf{C}, \boldsymbol{\tau})=\frac{1}{2} \operatorname{tr}(\mathbf{B} \boldsymbol{\tau})+\frac{1}{4} \operatorname{tr} \mathbf{B}\left(-\operatorname{tr} \boldsymbol{\tau}+\sqrt{4 \mu^{2}+(\operatorname{tr} \boldsymbol{\tau})^{2}-4 \operatorname{det} \boldsymbol{\tau}}\right)-\mu$

Stress τ as Input

Looking for a "cut" stress-free state:

Stress τ as Input

Looking for a "cut" stress-free state:

Stress τ as Input

Looking for a "cut" stress-free state:

Stress τ as Input

Looking for a "cut" stress-free state:

For a given stress field τ finding a stress-free state embedded in \mathbb{R}^{3} is like finding a needle in a nine dimensional haystack.

Stress τ as Input

Looking for a "cut" stress-free state:

For a given stress field τ
finding a stress-free state embedded in \mathbb{R}^{3} is like finding a needle in a nine dimensional haystack.
\square Is it necessary that the vitural state be an embedding in \mathbb{R}^{3} ?

Where to now?

\square This method takes a measured τ and produces $W(\mathbf{C}, \boldsymbol{\tau})$.

Where to now?

\square This method takes a measured $\boldsymbol{\tau}$ and produces $W(\mathbf{C}, \boldsymbol{\tau})$.
\square However it assumes a stress-free state living in some space.

Where to now?

\square This method takes a measured $\boldsymbol{\tau}$ and produces $W(\mathbf{C}, \boldsymbol{\tau})$.
\square However it assumes a stress-free state living in some space. Associated to a family of possible maps $\tilde{\chi}$.

Where to now?

\square This method takes a measured τ and produces $W(\mathbf{C}, \boldsymbol{\tau})$.
\square However it assumes a stress-free state living in some space. Associated to a family of possible maps $\tilde{\chi}$.
\square Should we only except $\tilde{\chi}$ where the stress-free state is embedded in \mathbf{R}^{3} ?

Where to now?

\square This method takes a measured $\boldsymbol{\tau}$ and produces $W(\mathbf{C}, \boldsymbol{\tau})$.
\square However it assumes a stress-free state living in some space. Associated to a family of possible maps $\tilde{\chi}$.
\square Should we only except $\tilde{\chi}$ where the stress-free state is embedded in \mathbf{R}^{3} ?
\square Should the riemannian metric $\tilde{\mathbf{G}}$ lead to a torsion-free connection?

Where to now?

\square This method takes a measured τ and produces $W(\mathbf{C}, \boldsymbol{\tau})$.
\square However it assumes a stress-free state living in some space. Associated to a family of possible maps $\tilde{\chi}$.
\square Should we only except $\tilde{\chi}$ where the stress-free state is embedded in \mathbf{R}^{3} ?
\square Should the riemannian metric $\tilde{\mathbf{G}}$ lead to a torsion-free connection?
\square How about the mixed derivatives $\partial_{\tilde{X}_{i} \tilde{X}_{j}} \tilde{\chi}=\partial_{\tilde{X}_{j} \tilde{X}_{i}} \tilde{\chi}$?

Where to now?

\square This method takes a measured τ and produces $W(\mathbf{C}, \boldsymbol{\tau})$.
\square However it assumes a stress-free state living in some space. Associated to a family of possible maps $\tilde{\chi}$.
\square Should we only except $\tilde{\chi}$ where the stress-free state is embedded in \mathbf{R}^{3} ?
\square Should the riemannian metric $\tilde{\mathbf{G}}$ lead to a torsion-free connection?
\square How about the mixed derivatives $\partial_{\tilde{X}_{i} \tilde{X}_{j}} \tilde{\chi}=\partial_{\tilde{X}_{j} \tilde{X}_{i}} \tilde{\chi}$?

Any questions?

Where to now?

\square This method takes a measured τ and produces $W(\mathbf{C}, \boldsymbol{\tau})$.
\square However it assumes a stress-free state living in some space. Associated to a family of possible maps $\tilde{\chi}$.
\square Should we only except $\tilde{\chi}$ where the stress-free state is embedded in \mathbf{R}^{3} ?
\square Should the riemannian metric $\tilde{\mathbf{G}}$ lead to a torsion-free connection?
\square How about the mixed derivatives $\partial_{\tilde{X}_{i} \tilde{X}_{j}} \tilde{\chi}=\partial_{\tilde{X}_{j} \tilde{X}_{i}} \tilde{\chi}$?

Any questions?

 Thanks for listening and hope you enjoyed the talk!
R. Shams and M. Destrade and R.W. Ogden, Initial stresses in elastic solids: Constitutive laws and acoustoelasticity, Wave Motion, 48 (2011) 552 - 567.
目 Jose Merodio, Ray W. Ogden, Javier Rodriguez, The influence of residual stress on finite deformation elastic response, International Journal of Non-Linear Mechanics, 56 (2013), 43

- 49 .

