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How do we deal with this? Energy W(B, 1)
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We apply the laws of physics to a continuous blob which is moving
through space.

Deformed
. Configuration, t =t
x(+ 1) aurarion L=
Undeformed X( ;t) =B
Configuration, t =0
B

With each position x = (X, t) we associate denisties such as
mass p(x, t) and stress T("(x, t).
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Continuum Blob Mechanics

To describe the forces F1(X, t), Fa(X, t), T™(X, t), n € T, B,
we make an imaginary slice

T()
Fy

Fy
—T®)

The forces F; and F2 may be determined by Boundary conditions.

While the internal stress T( can be written as T™ = o - n.
(One of Cauchy’s many theories).

m We call o a stress tensor, with o(X, t) € T, B: ® T B;.
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Continuum Blob Mechanics

removed.

The residual stress tensor 7 = o, when all external load is

To incorporate the residual stress 7 into the mechanics, we use the
above as a reference state.




Continuum Blob Mechanics

The circumferential stress in the cross section of an artery:

I-f1

(a) (b)

I-fm
-f

circumferential stress (kPa)

(a) is unloaded, (b) is loaded (assuming isotropy).
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Assumptions of Elasticity

Assumption of History Independance

W is independent of the past of x(+,t). That is for time t,
W(X, t) depends on x(-, t) and 7(-). ( Much like a spring )

Assumption of Locality

W(X,t) can be completely determined by any neighbordhood of
x(X, t) and 7(X). W depends only on the local stretch and pull.

~

The result W(X,t) = W(C(X,t), (X)), where
C(X,t) = Dx'(X, t)Dx(X,t) and

A

o(X, £) = 20Dx(X, t) v

3¢ (CX, 1), 7(X))Dx" (X, t).
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A well posed problem (hopefully)

pX =div o ( Equation of Motion )
oW
g = 2pDX ac DX (Constitutive Assumption)
O-(X, t) = F]_(X) for X € 6[)’ ( Boundary Conditions)

We assume given the initial B along with its physical attributes,
including the residual stress tensor T.

@ What remains is to specify the dependance of W on C and ...
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— Potential energy W/(C,0) increases —»
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Squeezing a Donut

For a residually stressed body it is not so clear
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— how does the potential energy W(C, 7) change? —
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Isotropic Invariants

Independent of a rotation of the reference configuration:
W(C,0) = W(Q"CQ,0), (C=Dy'Dy)

for any Q"Q = I. Hence we can diagonalize Q7CQ, so that

W(C,0) = W ((?; 5 i),o) — W(tr C, (tr C)2 — tr C2,det C).

where

tr C= A1+ A2+ Az,
(tr C)2 —tr C2 = Ao+ Aod3 + A3\ — 3
det C = A1 o )3.

One successful expansion

W(C,0) = Citr C+ Go((tr C)? —tr C?) + Gz det C.
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Isotropic Invariants

Still independent of a rotation of the reference configuration:
W(C,7)=W(Q7TCQ,Q7rQ),
One possible set of independent invariants [Shams et al. (2011)] is

tr C, (tr C)?> —tr C?, detC,

tr T, tr 7'2, tr 7'3,

tr (1C), tr (7C?), tr (72C), tr (r2C?).

A total of ten invariants! Too many constants to fit to

experimental data:
W = Citr C+ Gy((tr €)% —tr C2) + Gz det C + Tytr T + Totr 2.

B Which should be used/dropped (warnings from Anisotropy)?
What expansion to use?
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A Geometric Fix

J Cut and check. J Guess W, J Fit Data.
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m So we get energy as W (C, 1) = W¢ (é . C) !
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A Geometric Fix

Incompressibility means

detDY =1 — det <rR 0

0 9®>:1 - rR9@r/R:1



A Geometric Fix

Incompressibility means

~ rr 0
detDy =1 = det<0 fo

= 0(0)= é—ge and r(R) = y/a% + %(R2 — A?)

)Zl - I‘Reer/R:].
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A Geometric Fix

0(©) = O and r(R) = %92 SRz 2)

Simple: Wc(€) = 4(tr €-3) — 7 = ppDYZLE CDYT — p(R)I

implying that

= (T )= ("0 ey )

Trr(A) = rz(A) = p(A) = 0 = 7,+(B) = rz(B) — p(B).
Plug into equilibrium equation
divTt =0 = r/rrORTw + T — 799 = 0,

solve for p(R).
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Stress T as Input

0 L

Adopting

L

|

W(C,7) = Wc(€C) =4 (tr (€c) - 3) -

00

u
2
(remember C = Dy "Dy ).
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DxDx’
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Stress T as Input

0 L

Adopting

00

|

(7)

L

DxDx’

W(C,7) = Wc(EC) =& (tr (€C) — 3) = ( tr (BB(7)) — 3).
(remember C = Dy "Dy ).

@ Though we assume there is a virtual stress-free state, that gives é
we don't know what it looks like!
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Stress T as Input

To find B(7):

_otr C .
=D~z DY” — pl = uB — pl,

Assume B incompressible, then after some algebra an inversion is
possible. Plain strain example:

- 1
B=-7+_— (—tr7‘+ \/4M2+(tr ™)? _4detT> l

then using W(C, ) = W¢(BB), leading to

1 1
W(C,7) = Str(Br)+ trB <—tr’r + \/4u2 +(tr 7)? — 4det T) .y
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Stress T as Input

Looking for a "cut” stress-free state:
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For a given stress field T

finding a stress-free state embedded in R3 is like
finding a needle in a nine dimensional haystack.

B Is it necessary that the vitural state be an embedding in R3?
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Where to now?
B This method takes a measured 7 and produces W(C, 7).

@ However it assumes a stress-free state living in some space.
Associated to a family of possible maps ¥.

@ Should we only except ¥ where the stress-free state is embedded
in R3?

® Should the riemannian metric G lead to a torsion-free
connection?

@ How about the mixed derivatives d5 5 X = J 5 X?

J M

Any questions?

Thanks for listening and hope you enjoyed the talk!
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