
MLS Meshless Method for Wave and Advection Equation
Artur Gower 06/06/2012

1 Abstract

We present the moving finite element method together with a brief on the
origins of the idea together with an overview and some simple deductions of
the method. We then present the general 1D elastic wave equation, reveal
it’s domain of dependence and show how to formulate the equation in terms
of an MLS meshless method. Upwind schemes are discussed and numerical
results are presented for the advection equation.

2 Meshless Methods

To introduce meshless methods here is an extract from [1] “Meshless Meth-
ods: an Overview and Recent Developments”:

“The problems of computational mechanics grow ever more challenging.
For example, in the simulation of manufacturing processes such as extrusion
and molding, it is necessary to deal with extremely large deformations of
the mesh while in computations of castings the propagation of interfaces
between solids and liquids is crucial. In simulations of failure processes, we
need to model the propagation of cracks with arbitrary and complex paths.
In the development of advanced materials, methods which can track the
growth of phase boundaries and extensive microcracking are required.

These problems are not well suited to conventional computational meth-
ods such as nite element, nite volume or nite di erence methods. The un-
derlying structure of these methods which originates from their reliance on
a mesh is not well suited to the treatment of discontinuities which do not
coincide with the original mesh lines. Thus the most viable strategy for deal-
ing with moving discontinuities in methods based on meshes is to remesh
in each step of the evolution so that mesh lines remain coincident with the
discontinuities throughout the evolution of the problem. This can, of course,
introduce numerous di culties such as the need to project between meshes in
successive stages of the problem, which lead to degradation of accuracy and
complexity in the computer program, not to mention the burden associated
with a large number of remeshings.”

The first steps to develop such methods were based on mollifiers, or a

1

kernal approximation,

uh(x) =

∫
Ω
ω(x− y, h)u(y)dV, (1)

where uh(x) is the approximation, ω(x−y, h) is a kernel or weight function,
and h is a measure of the size of the support. Where ω was required to
satisfy certain properties, such as

•
∫

Ω ω(x− y, h)dV = 1

• ω(x, h)→ δ(s) as h→ 0, where δ(x) is the delta dirac function.

A simple and much used choice for ω is radially symmetric functions, for
example the exponential:

ω(x, h) =

{
exp−βx2/h2 x/h ≤ 1,

0 x/h > 0.

For the discrete version of the Mollifier equation (1) we wish to obtain a
formula in terms of nodal values uj = u(xj) for j = 1 to N . This would lead
to formulas of the type:

uh(x) =
∑
j

ω(x− xj , h)uj∆Vj =
∑
j

Φh
j (x)uj .

We call Φh
j the shape functions where in most cases uj 6= uh(xj) for the

Φh
j ’s are not true interpolants. The problem with these methods, most com-

monly known as “Smooth Particle Hydrodynamics” is two fold: to develop
robust techniques for assigining ∆Vj ’s for each node and more crucially the
discrete form above does not lead to consistent methods, in other words for
reasonable choices of ω and ∆Vj it can be shown that for u(x) = x,

uh(xi) =
∑
j

Φh
j (xi)xj 6= xi,

for a nonuniform arrangment of nodes and boundaries. See [5] and [1]. Now
we present a most successful method for meshless methods that is flexible
and consistent.

2

2.1 Moving Least Squares - MLS

Following the idea of mollifiers we wish to weight nodal values of u(x) on the
nodes xI = [x1, x2, . . . , xN] then we denote UI = [u(x1), u(x2), . . . , u(xN)]T .
For the weight functions let the matrix WI(x) be a diagnonal matrix of the
vector [ω((x− x1)/r1), ω((x− x2)/r2), . . . , ω((x− xN)/rN)], each node can
have a different range of influence. First we wish to approximate u(x) giving
a weight to each node,∑

j

w(x/rj − xj/rj)uj = WI(x)UI ,

now the major obstacle is consistency, i.e. we want the method to be exact
for u(x) = αKx

K + αK−1x
K−1 + . . . α0. To make this so let

UkI =[xk1, x
k
2, . . . , x

k
N]T , (2)

PI =
[
U1
I |U2

I | · · · |UKI
]
, (3)

α =[α0, α1, . . . , αK]T , (4)

then consistency means we wish to recover αj ’s from WI(x)PIα for every x.
By construction WI(x)PIα should be one-to-one, to restrict it’s image to it’s
codomain we multiply by (WI(x)PI)

T on the left resulting in P TI WI
2(x)PIα,

this can also be seen as removing everything orthogonal to the space gener-
ated by WI(x)PI . Now we may invert to obtain

(P TI WI
2(x)PI)

−1P TI WI
2(x)PIα = α,

now to finish we denote p(x) = [1, x, . . . , xK] and use WI in place of WI
2

consistency follows from the fact that

p(x)(P TI WI(x)PI)
−1P TI WI(x)UkI = xk,

Hence the so called shape functions Φj(x) and method are given by

Φj(x) = p(x)(P TI WI(x)PI)
−1P TI WI(x)ej , (5)

u(x) =
∑
j

Φj(x)uj = ΦI(x)UI . (6)

In the literature the MLS method is deduced as a weighted minimization:
to represent u(x) approximately as u(x) = p(x)α where

min
α

∑
j

ω((x− xj)/rj)‖p(xj)α− u(xj)‖2,

3

which results in the same method.
Let us investigate some of the Φj shape functions. We shall use the

exponential weight function:

ω(x) =

{
exp−3x2 x ≤ 1,

0 x > 0.
(7)

The resulting shape functions for

xI = [0, 0.2, 0.4, 0.6, 0.8, 1], (8)

p(x) = [1, x], (9)

ωj(x) = ω(x/0.3− xj/0.3), (10)

are shown in Figure 1. Note that during the proof of consistency of the
MLS method there is considerable flexability in the choice of the ωj ’s. One
interesting choise is to use ωj(x) = ω(x/rj − xj/rj − bj) so as to slant the
domain of influence of the node. This strategy can be usefull to help acheive
an upwind behaviour for hyperbolic equations. See Figure 2 for an example
with the above data and bj = 1/4 which shifts the domain of influence
roughly rj to the right.

The power of approximation of MLS is near-best in the sense that the
local error is bounded in terms of the error of a local best polynomial approx-
imation given some regularity constraints on the data and weight functions.
See [4].

4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

x

 Phi
1

 Phi
3

Figure 1: The shape functions Φ1, Φ3 for x(1) = 0, x(3) = 0.4.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

x

 Phi
1

 Phi
3

Figure 2: The slanted shape functions for x(1) = 0, x(3) = 0.4 and ωj =
ω(x/0.3− xj/0.3− 1.4) .

5

3 Wave equations

We will briefly illustrate the domain of dependence of the 1D-elastic equa-
tions, which is fundamental for designing numerical schemes.

ρ(x)vt(x, t) = σx(x, t) + f(x, t) , σ(x, t) = ρ(x)
∂Ψ

∂ux
(ux, x), (11)

ut(x, t) = v(x, t). (12)

We shall formulate these equation as a Hyperbolic system,uv
σ


t

=

0 0 0
0 0 1/ρ
0 ρψ 0

uv
σ


x

+

vf
0

 (13)

or equivalently

Qt = A(Q, x)Qx + F (Q, x) (14)

where

ψ(ux, x) =
∂2Ψ

∂u2
x

(ux, x) and Q = [u, v, σ]T .

Then by multiplying both sides of equation (14) on the left by the inverse
eigenvector matrix of A we get

ρ
√
ψ
d

dt
v(γ1(t), t) +

d

dt
σ(γ1(t), t) = fρ

√
ψ,

−ρ
√
ψ
d

dt
v(γ2(t), t) +

d

dt
σ(γ2(t), t) = −fρ

√
ψ,

d

dt
u(γ3(t), t) = v, (15)

where

∂tγ1(τ) = −
√
ψ(γ1(τ), τ), γ1(t) = x,

∂tγ2(τ) =
√
ψ(γ2(τ), τ), γ2(t) = x,

∂tγ3(τ) = 0, γ3(t) = x.

These equations together with causality1 indicate that the boundary of the
domain of dependence for each point x is determined by the curves (γ1(τ), τ)
and (γ2(τ), τ) for τ < t.

1that information from the future can not effect the present.

6

If ψ only depends on x, which can be considered as a linearized material
close to some state, we can manipulate the characteristic equations (15)
further to obtain:

d

dt

[
ρ(γ1(t))

√
ψ(γ1(t))v(γ1(t), t) + σ(γ1(t), t)

]
= f(γ1(t), t)ρ(γ1(t))

√
ψ(γ1(t))

+
d

dt
ρ(γ1(t))ψ(γ1(t)),

d

dt

[
−ρ(γ2(t))

√
ψ(γ2(t))v(γ2(t), t) + σ(γ2(t), t)

]
= −f(γ2(t), t)ρ(γ2(t))

√
ψ(γ2(t))

− d

dt
ρ(γ2(t))ψ(γ2(t)),

d

dt
u(γ3(t), t) = v(γ3(t), t),

which in turn implies that

2ρ(x)ψ(x)ux(x, t) =

t∫
t0

f(γ1(τ), τ)
√
ψ(γ1(τ))− f(γ2(τ), τ)

√
ψ(γ2(τ))dτ

+ ρ(γ2(t0))ψ(γ2(t0))− ρ(γ1(t0))ψ(γ1(t0)),

2ρ(x)
√
ψ(x)ut(x, t) =

t∫
t0

f(γ1(τ), τ)
√
ψ(γ1(τ)) + f(γ2(τ), τ)

√
ψ(γ2(τ))dτ

+ 2ρ(x)ψ(x)− ρ(γ1(0))ψ(γ1(0))− ρ(γ2(0))ψ(γ2(0)),

(16)

where in this case σ = ρψux.
The domain of dependence of each point must be taken into account

when designing the numerical scheme. For the MLS method, if we fix a
constant time step then for every point we can calculate the radius of it’s
corresponding weight function to cover the point’s domain of dependence.

3.1 Variation Formulation and MLS Method

The convergence of polynomial finite element methods for the wave equa-
tion [2] and a certain class of nonlinear wave equation [3] has been be proven.
Adapting these proofs for the meshless MLS should be viable but is outside
the scope of this project. Also, to the authors knowledge there exist no
proof of convergence of the general elastic wave equation, presented bellow,
by using finite elements.

7

The elastic wave equation (12) can be formulated in the variation form

< ρvt, δu > + < σ, δux >=< f, δu > +σδu
∣∣∣x=b

x=a
. (17)

A nice property about this method is that it potentially conserves a discrete
energy. Let

E(t) =

b∫
a

ρ
v2(x, t)

2
+ ρΨ(x, t)dx,

then if for our numerical scheme we have that

< ρ(·)vt(·, t), v(·, t) > + < σ(·, t), vx(·, t) > =
E(tn+1)− E(tn)

tn+1 − tn
, (18)

for tn ≤ t ≤ tn+1 then choosing δu = v equation (17) becomes

E(tn+1)−E(tn) = (tn+1−tn) (< f(·, t), v(·, t) > +σ(b, t)v(b, t)− σ(a, t)v(a, t)) ,
(19)

which is a discrete energy conservation.
For the Meshless MLS method we approximate

u(x, t) ≈ uI(x, t) = ΦT (x)U(t), (20)

δu(x) = ΦT (x)δU, (21)

where U(t), δU ∈ Rn, Φ(x) ∈ Rn. Though we are not free to choose any
U and δU for we want to satisfy the boundary conditions exaclty δxuI(b, t) =
δxΦT (b)U(t) = δxΦT (b)δU = g2(t) and δxuI(a, t) = δxΦT (a)U(t) = δxΦT (a)δU =
g1(t). To do so, let

A =

(
∂xΦT (a)
∂xΦT (b)

)
and Abj = 0 , for j = 1 to n− 2

where the bj ’s form the basis of kernel(A). Let

B = (b1|b2| . . . |bn−2) and Ay(t) =

(
g1(t)
g2(t)

)
,

then every U(t) and δU can be written as

U(t) = BŨ(t) + y(t), δU = BδŨ + y(t) (22)

8

and

uI(x, t) = ΦT (x)BŨ(t) + ΦT (x)y(t), δu(x) = ΦT (x)BδŨ + ΦT (x)y(t)
(23)

where Ũ(t), δŨ ∈ Rn−2. To simplify notation let ΦB(x) = BTΦ(x) , we
denote Ũ(t) as simply U(t) and will work with g2 = g1 = 0 for what follows.
Substituting

uI(x, t) = ΦB(x) · U(t), (24)

δu(x) = ΦB(x), (25)

in the variation form for the linearized material we get

b∫
a

ρ(x)ΦB(x)⊗ ΦB(x)dx · Utt(t) +

b∫
a

ρ(x)ψ(x)∂xΦB(x)⊗ ∂xΦB(x)dx · U(t) =

b∫
a

f(x, t)ΦB(x)dx,

where δu = ΦB(x) so that solving the above system is to solve for every
δu = ΦT

B(x)δU .
We will also formulate the advection equation (3.1) in the same manner.

ut = ux + f, u(0, t) = u0(t), u(b, t) = 0,

whose variation form, with the same analysis as before. leads to,

b∫
a

ΦB(x)⊗ ΦB(x)dx · Ut(t) =

b∫
a

ΦB(x)⊗ ∂xΦB(x)dx · U(t) +

b∫
a

f(x, t)ΦB(x)dx,

(26)

where B’s columns generate the nullspace of

A =
(
ΦT (b)

)
.

3.2 Numerical Schemes

We shall discuss a scheme for the advection equation (3.1) first. For the
scheme to be stable our approximation to u(x, t+ h) must take information

9

only from the domain of dependence, which for each point (x, t) is deter-
mined by the line (x + τ, t − τ) for τ > 0. The only form to approximate
ut from along this line is to extract it’s contribution to (u(x, t+ h)− u(x+
h, t))/h, which by doing a taylor expansion on this discrete difference would
tell us that

(u(x, t+ h)− u(x+ h, t))/h = ut − ux +O(h3) = f(x, t) +O(h3).

As this involves a discrete difference for the space derivative it does not
translate exactly to the variational form (26), i.e. one form would be to use
the scheme

U j(t+ h) = U j+1(t)

U(t+ h) = U(t+ h)+ < (ΦB ⊗ ΦB)−1, f(·, t+ h/2)ΦB >, (27)

where U j(t+h) corresponds to a node on x = jh, this method gives an almost
exact answer, has the same order of approximation as MLS “interpolation”.
A simulation result is shown in Figure (3). We have used rj = dt for all
nodes and simulations.. So to use equation (26) we must either introduce
dissipation or instability. One manner to do so is the following,

0 0.2 0.4 0.6 0.8 1
−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

P
h

i BT
 U

x

Figure 3: The evolution in time of the initial condition being advected to
the left with f(x) = 0.2 cos (x− x(N) + π/2) sin(x).

10

ut(x, t+ h/2) = ΦT
B(x)Ut(t+ h/2) and ux(x, t+ h/2) = ∂xΦT

B(x)U(t+ h/2),

then the most evident would be to adopt

ΦT
B(x)Ut(t+ h/2) =

ΦT
B(x)

h
(U(t+ h)− U(t)),

note that ΦT
B(x)U(t) is outside ΦT

B(x)U(t+ h) domain of dependence, thus
instability may appear and convergence is unlikely. Let us try to recover by
moving ux(x, t+ h/2) to within the domain of dependence,

ux(x, t+h/2) = ux(x+h/2, t)−uxx(x+h/2, t)h/2+uxt(x+h/2, t)h/2+O(h2),

where by the advection equation gives us that uxx = uxt, hence up to order-2
ux(x, t + h/2) = ux(x + h/2, t) + fx(x + h/2, t)h/2. To implment this we
substitute in the variation formulation of the advection equation (26),

ΦT
B(x)Ut(t+ h/2) =

ΦT
B(x)

h
(U(t+ h)− U(t)),

∂xΦT
B(x)U(t+ h/2) = ∂xΦT

B(x+ h/2)U(t) + fx(x+ h/2, t)h/2.

Leading to

U(t+ h) = U(t)+

h

 b∫
a

ΦB(x)⊗ ΦB(x)dx

−1 b∫
a

ΦB(x)⊗ ∂xΦB(x+ h/2)dx · U(t)+

h

 b∫
a

ΦB(x)⊗ ΦB(x)dx

−1 b∫
a

(f(x, t) + fx(x+ h/2, t)h/2)ΦB(x)dx.

(28)

where the domain of influence for each node, rj , should be around h, for
when taking a h time step back, i.e. U(t + h) depending on U(t) , the
domain of dependence is h distant from U(t) in the x axis. Hence we have
used rj = 1.2 ∗ h for all the following simluations.

The result for this simulation with h = 0.02, N = 60, f = 0 and xI evenly
distributed are shown in Figure (4). Initially the the solution is advected
exactly, but the price for conservating energy and taking from outside of the
domain of dependence soon is paid with the onset of complete instability.
This behaviour does not change by decreasing h. To attempt to bring

11

0 0.2 0.4 0.6 0.8 1
−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

P
h

i BT
 U

x

Figure 4: The evolution in time during 0.4s of the initial condition by
scheme (28).

back some stability we can add some numerical dissipation. One way is
to shift ux(x, t + h/2) to ux(x, t + h/2 + 0.3h). The results are shown in
Figure 5 with h = 0.1. The good news is that the smaller h is the closer the
approximation gets to the real solution. To demonstrate we compare the
results of this dissipative scheme with the exact solution, which we take to
be the result of the scheme given by equations (27). The result is shown in
Figure 6 for f(x) = 0.2 cos (x− x(N) + π/2) sin(x) and h = 0.005.

12

0 0.2 0.4 0.6 0.8 1
−0.05

0

0.05

0.1

0.15

0.2

P
h

i BT
 U

x

Figure 5: The evolution in time during 1s of the initial condition by adding
dissipation to scheme (28).

13

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

P
h

i BT
 U

x

Dissipative Scheme
Exact Scheme

Figure 6: The evolution in time of the comparison of the exact solution and
dissipative scheme during 0.5s.

14

References

[1] T. Belytschko, Y. Krongauz, D. Organ, M. Fleming, and P. Krysl. Mesh-
less methods: An overview and recent developments. Computer Methods
in Applied Mechanics and Engineering, 139(14):3 – 47, 1996.

[2] Donald A. French and Todd E. Peterson. A continuous space-time finite
element method for the wave equation. Comput. Methods Appl. Mech.
Engrg, 107:145–157, 1996.

[3] Ohannes Karakashian and Charalambos Makridakis. Convergence of a
continuous galerkin method with mesh modification for nonlinear wave
equations. Math. Comp.

[4] David Levin. The approximation power of moving least-squares. Tech-
nical report, Math. Comp, 1998.

[5] M.B. Liu and G.R. Liu. Restoring particle consistency in smoothed
particle hydrodynamics. Applied Numerical Mathematics, 56(1):19 – 36,
2006.

15

