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Abstract. We define and study odd analogues of classical geometric and combinatorial

objects associated to permutations, namely odd Schubert varieties, odd diagrams, and odd

inversion sets. We show that there is a bijection between odd inversion sets of permutations

and acyclic orientations of the Turán graph, that the dimension of the odd Schubert variety

associated to a permutation is the odd length of the permutation, and give several necessary

conditions for a subset of [n] × [n] to be the odd diagram of a permutation. We also study

the sign-twisted generating function of the odd length over descent classes of the symmetric

groups.

1. Introduction

Motivated by questions in enumerative geometry a new statistic on the symmetric groups

was introduced and studied in [7]. This statistic combines combinatorial and parity conditions

and is now known as the odd inversion number or odd length (see, e.g., [2]). It was conjectured

in [7, Conjecture C] that the sign-twisted generating function of this new statistic on any

quotient of any symmetric group is given by an explicit product formula. This conjecture was

proved in [2]. An odd length statistic has also been defined and studied on the hyperoctahedral

groups by Stasinski and Voll in [12] and [13], on the even hyperoctahedral groups by the authors

in [3], and on all Weyl groups in [4] and [14].

Our purpose in this paper is to carry out a further study of this statistic on the symmetric

groups from the combinatorial, enumerative and geometric point of view. More precisely, we

show that, given any permutation σ, there is a complex projective variety Xo(σ) (which we call

an odd Schubert variety) whose dimension is the odd length of σ. We also define and study the

odd analogues of two other familiar combinatorial objects associated to a permutation, namely

diagrams and inversion sets. We show that there is a simple transformation connecting odd

inversion sets and odd diagrams, we characterize the subsets of [n]× [n] that are odd inversion

sets of permutations, and we give several necessary conditions for a subset of [n] × [n] to be

the odd diagram of a permutation. Also, we study the sign-twisted generating function of

the odd length over descent classes of the symmetric groups. In particular, we give sufficient

conditions for the generating function to be zero, and compute it explicitly for the alternating

permutations and for a family of descent classes which includes all quotients.

The organization of the paper is as follows. In the next section we recall definitions and

results that we use in the sequel. In § 3 we introduce and study odd Schubert varieties,

odd inversion sets, and odd diagrams. More precisely, we show that the odd length of a

permutation σ is the dimension of its associated odd Schubert variety, and that this variety

depends on a subset of the diagram of σ (which we call the odd diagram of σ). Furthermore,

that there is a simple transformation relating the odd diagram with a subset of the inversion

set (which we call the odd inversion set) of σ, that there is a bijection between odd inversion

sets of permutations and acyclic orientations of the Turán graph, and give several necessary

conditions for a subset of [n] × [n] to be the odd diagram of a permutation. In § 4 we

study the effect that some operations, that can be performed on a descent class, have on
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the corresponding sign-twisted generating function of the odd length. In § 5 we give sufficient

conditions on a descent class for its sign-twisted generating function to be zero and we compute

it explicitly for the descent classes of the alternating permutations, and for a general family of

descent classes which includes all quotients. Finally, in § 6, we present some conjectures and

open problems arising from the present work.

2. Preliminaries

In this section we collect some notation and basic facts about symmetric groups that we use

in the sequel. Besides the combinatorial aspects we recall the geometric facts and definitions

about the Schubert variety associated with a permutation.

For X ⊆ N we let X0 denote X ∪ {0}. For m,n ∈ Z, m ≤ n, we let [m,n] denote the

set {m,m + 1, . . . , n − 1, n} and for n ∈ N we let [n] = [1, n]. If {a1, . . . , an} ⊆ Z we write

{a1, . . . , an}< to mean that a1 < · · · < an. Given J ⊆ [n − 1] there are unique integers

a1 < · · · < as and b1 < · · · < bs such that J = [a1, b1] ∪ · · · ∪ [as, bs] and bi + 1 < ai+1 for

i = 1, . . . , s− 1. We call the intervals [a1, b1], . . . , [as, bs] the connected components of J .

For n ∈ N we let [n]q := (1− qn)/(1− q) (so [0]q = 0), and [n]q! :=
∏n
i=1[i]q (so [0]q! = 1).

For n1, . . . , nk ∈ N such that
∑k

i=1 ni = n we let[
n

n1, . . . , nk

]
q

:=
[n]q!

[n1]q! · · · · · [nk]q!
.

We refer to [1] for notation, terminology and basic facts about Coxeter groups. The sym-

metric group Sn is the group of permutations of [n]. We let S = {s1, . . . , sn−1} denote the

set of standard generators of Sn, where si denotes the i-th transposition (i, i + 1). It is well

known that Sn is a Coxeter group with respect to this set of generators and that for σ ∈ Sn
the Coxeter length `(σ) and the descent set Des(σ) have combinatorial interpretations

`(σ) = |{(i, j) ∈ [n]2 : i < j, σ(i) > σ(j)}|

and

(2.1) Des(σ) = |{i ∈ [n− 1] : σ(i) > σ(i+ 1)}|,

respectively. In the sequel we often identify the generating set S with the set [n − 1]. For

σ ∈ Sn the diagram of σ is

D(σ) := {(i, j) ∈ [n]2 : j < σ(i), σ−1(j) > i},

and the inversion set of σ is

Inv(σ) := {(i, j) ∈ [n]2 : i < j, σ(i) > σ(j)}.

Note that |D(σ)| = | Inv(σ)| = `(σ), and that (i, σ(j)) ∈ D(σ) if and only if (i, j) ∈ Inv(σ),

for all (i, j) ∈ [n]2.

Let n ∈ N and {e1, . . . , en} be the canonical basis of Cn. A flag in Cn is a sequence

(U1, . . . , Un) of subspaces of Cn such that U1 ⊂ · · · ⊂ Un and dim(Ui) = i for all i = 1, . . . , n.

The set Fn of all flags in Cn is called the flag manifold of Cn. For σ ∈ Sn we now recall the

definition of the the Schubert cell of σ, which we denote by C(σ). Namely, (U1, . . . , Un) ∈ C(σ)

if and only if there are (ai,j)(i,j)∈D(σ) ∈ CD(σ) such that

Uk = 〈{eσ(i) +
∑

{j:(i,j)∈D(σ)}

ai,j ej}1≤i≤k〉
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for k ∈ [n]. It is well known (see, e.g., [9, (A.4)]) and not hard to see, that the map

(ai,j)(i,j)∈D(σ) 7→ (U1, . . . , Un) is injective. In particular, C(σ) is isomorphic to an affine

space of dimension `(σ).

Recall (see, e.g., [5, p. 209]) that for i ∈ [n] the Plücker embedding πi associates to any

i-dimensional subspace U of Cn a point in the projective space P(Λi(Cn)) = P(ni )−1. More

precisely, the image of U under πi is the
(
n
i

)
-tuple (UI){I⊆[n]:|I|=i} where, for I ⊆ [n], |I| = i,

UI is the minor whose columns are indexed by the elements in I of a matrix which has as rows

a basis of U .

One may thus associate to any flag (U1, . . . , Un) of Cn a point in the Cartesian product

P(Λ1(Cn))× P(Λ2(Cn))× · · · × P(Λn−1(Cn)). In turn, to any point in this product the Segre

embedding (see, e.g., [6, Chap. I, Ex. 2.14] for the definition and information about the Segre

embedding) associates a point in the projective space P(E) where E := Cn ⊗ Λ2(Cn)⊗ · · · ⊗
Λn−1(Cn). The image of Fn under this composite embedding (which we denote by π) is a

complex projective algebraic variety.

The Schubert variety X(σ) is the closure of π(C(σ)) in π(Fn). It is well known that X(σ)

is a complex projective variety of dimension `(σ).

One of our results concerns generating functions on descent classes of the symmetric groups,

which we now define. For I, J ⊆ S, J ⊆ S \ I we let

DIJ(Sn) := {σ ∈ Sn | J ⊆ Des(σ) ⊆ S \ I},(2.2)

SIn := DI∅(Sn).(2.3)

Similarly, for subsets X ⊆ Sn, we denote DIJ(X) := X ∩ DIJ(Sn).

To state the main result of [2], which is a special case of one of our main results, we need

the following definitions. Let n ∈ N. Set:

Cn,+ := {σ ∈ Sn : i+ σ(i) ≡ 0 (mod 2), i = 1, . . . , n},
Cn,− := {σ ∈ Sn : i+ σ(i) ≡ 1 (mod 2), i = 1, . . . , n},
Cn := Cn,+ ∪ Cn,−.

Note that

Cn = {σ ∈ Sn : i ≡ j (mod 2)⇒ σ(i) ≡ σ(j) (mod 2), for all i, j ∈ [n]}.

Elements in Cn,+ are called even chessboard elements, those in Cn,− odd chessboard elements.

Informally, a chessboard element is a permutation whose matrix fits either on all black or on

all white squares of a chessboard. Note that |Cn,+| =
⌊
n
2

⌋
!
⌈
n
2

⌉
! (see also [10, A010551]). For

n = 2m+ 1, clearly Cn,− = ∅ and therefore Cn = Cn,+.

Note that the set of chessboard elements Cn is a subgroup of Sn and that the set of even

chessboard elements Cn,+ is a subgroup of Cn isomorphic to Sdn2 e × Sbn2 c. Relatives of these

groups feature in our proof of Proposition 3.5.

The odd length is defined as follows (see also [7] and [2]).

Definition 2.1. Let n ∈ N and σ ∈ Sn. The odd length of σ is

(2.4) L(σ) := |{(i, j) ∈ [n]2 : i < j, σ(i) > σ(j), i 6≡ j (mod 2)}|.

Informally, the statistic L counts inversions between values in positions with opposite parity.

In the next proposition we collect some properties satisfied by L.

Proposition 2.2. Let n ∈ N and let w0 be the unique longest element of Sn. Then

(i) L(e) = 0,
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(ii) L(si) = 1, for i = 1, . . . , n− 1,

(iii) L(σw0) = L(w0σ) = L(w0)− L(σ) for all σ ∈ Sn,

(iv) w0 is the unique element on which L attains its maximum, and L(w0) =
⌊
n
2

⌋ ⌈
n
2

⌉
.

Proof. The only non-trivial point is the last one. It follows from (iii) and the fact that the

identity is the unique element on which L is zero. The last statement comes from the fact

that, by definition, L(w0) =
∑n−1

i=1 d
i
2e. �

The following result, conjectured in [7] and proved in [2], gives explicit product formulas

for the sign-twisted distribution of the odd length on all parabolic quotients of the symmetric

groups.

Theorem 2.3. Let n ∈ N, I ⊆ [n− 1], and I1, . . . , Is be the connected components of I. Then

∑
σ∈SIn

(−1)`(σ)xL(σ) =



[
m⌊

|I1|+1
2

⌋
, . . . ,

⌊
|Is|+1

2

⌋ ]
x2

bn−1
2 c∏

k=b+1

(1− x2k),

if n ≡ 1 (mod 2), or if n = 2b,

(1 + xm)

[
m⌊

|I1|+1
2

⌋
, . . . ,

⌊
|Is|+1

2

⌋ ]
x2

bn−1
2 c∏

k=b+1

(1− x2k),

otherwise,

(2.5)

where b :=
∑s

k=1

⌊
|Ik|+1

2

⌋
.

More precisely, the following result is what is proved in [2].

Theorem 2.4. Let n ∈ N, I ⊆ [n− 1], and I1, . . . , Is be the connected components of I. Then

∑
σ∈DI∅(Cn,+)

(−1)`(σ)xL(σ) =

[
b⌊

|I1|+1
2

⌋
, . . . ,

⌊
|Is|+1

2

⌋ ]
x2

bn−1
2 c∏

k=b+1

(1− x2k) ,(2.6)

and

∑
σ∈DI∅(Cn,−)

(−1)`(σ)xL(σ) =


0, if n ≡ 1 (mod 2), or

if n ≡ 0 (mod 2) and b = m

−xm
∑

σ∈DI∅(Cn,+)

(−1)`(σ)xL(σ), otherwise,

(2.7)

where b :=
∑s

k=1

⌊
|Ik|+1

2

⌋
, and m := bn2 c.

3. Odd diagrams, odd inversion sets, and odd Schubert varieties

In this section we define and study odd analogues of familiar combinatorial and geomet-

ric objects which are associated to permutations. More precisely, we define and study odd

diagrams, odd Schubert varieties, and odd inversion sets. In particular, we give a geometric

interpretation of the odd length function L : Sn → N0 as the dimension of the corresponding

odd Schubert variety.

Let n ∈ N and σ ∈ Sn. We define the odd diagram of σ to be

Do(σ) := {(i, j) ∈ D(σ) : σ−1(j) 6≡ i (mod 2)}.

Clearly Do(σ) ⊂ D(σ) for all σ ∈ Sn. Also, note that |Do(σ)| = L(σ).
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• • •
◦

◦•

◦

◦

(a) (b)

b a
◦

◦c

◦

◦

Figure 1. The diagram (a) and odd Schubert cell (b) of σ = [4, 1, 3, 2] ∈
S4. Elements of the diagram are indicated by a •, while the permutation is

represented by ◦.

Let (U1, . . . , Un) ∈ C(σ) and (ai,j)(i,j)∈D(σ) ∈ CD(σ) be the corresponding set of complex

numbers (see § 2). We define the odd Schubert cell of σ to be

Co(σ) := {(U1, . . . , Un) ∈ C(σ) : ai,j = 0 if (i, j) ∈ D(σ) \Do(σ)}.

So if (U1, . . . , Un) ∈ Co(σ) then there are (ai,j)(i,j)∈Do(σ) ∈ CDo(σ) such that

Uk = 〈{eσ(i) +
∑

{j:(i,j)∈Do(σ)}

ai,j ej}1≤i≤k〉

for all k ∈ [n], and all flags of this form are in Co(σ). In particular, Co(σ) is isomorphic to

an affine space of dimension L(σ). We then define the odd Schubert variety Xo(σ) associated

with σ to be the closure of π(Co(σ)) in π(Fn), where π is the embedding defined in § 2. The

next result then follows from standard facts (see, e.g., [6, Chap. I, Ex. 2.17]).

Proposition 3.1. Let σ ∈ Sn. Then Xo(σ) is a complex projective variety of dimension L(σ).

We illustrate our definitions with an example.

Example 3.2. Let σ := [4, 1, 3, 2]. Then Co(σ) consists of all flags (U1, U2, U3, U4) ∈ F4 for

which there are complex numbers a, b, c ∈ C such that U1 = 〈{e4+ae2+be1}〉, U2 = 〈{e4+ae2+

be1, e1}〉, and U3 = 〈{e4 +ae2 + be1, e1, e3 + ce2}〉. The Plücker coordinates of these subspaces

are, respectively, (b, a, 0, 1), (−a, 0,−1, 0, 0, 0), and (0, 1, c,−a). The Segre embedding of this

triple of points is, after removing 0’s,

(3.1) (−ab,−abc, ab2, a2b,−b,−bc, ab,−a2,−a2c, a3,−a,−ac, a2,−a,−ac, a2,−1,−c, a).

Therefore, the odd Schubert cell Co([4, 1, 3, 2]) may be identified with all the points in P(C18)

of the form (3.1) where a, b, c ∈ C.

It is easy to characterize the permutations for which the diagram and the odd diagram

coincide.

Proposition 3.3. Let σ ∈ Sn. We have D(σ) = Do(σ) if and only if σ(k − 2) < σ(k) for all

3 ≤ k ≤ n.

The following is an immediate consequence.

Corollary 3.4. Let σ ∈ Sn. The odd Schubert variety Xo(σ) coincides with the Schubert

variety X(σ) if and only if σ(k − 2) < σ(k) for all k ∈ [3, n].

For n ∈ N, there are

(
n⌊
n
2

⌋) permutations of degree n satisfying the last property, and thus

for which L and ` coincide; see also the sequence [10, A001405]. We write

Gn := {σ ∈ Sn : σ(k − 2) < σ(k) for all 3 ≤ k ≤ n} = {σ ∈ Sn : `(σ) = L(σ)}



6 FRANCESCO BRENTI AND ANGELA CARNEVALE

for the set of permutations for which all inversions are odd inversions. In particular, the

previous proposition implies that for permutations in Gn the odd diagram “faithfully” encodes

the permutation itself. It would be interesting to characterize, for every n, the largest subset

of Sn on which the map associating to a permutation its odd diagram is injective. In § 6

we put forward a conjecture in this direction. Now, inspired by Proposition 3.3, we prove a

product formula for the distribution of the difference of length and odd length, namely of the

even inversions einv over the symmetric groups.

Proposition 3.5. Let n ∈ N. Then

∑
σ∈Sn

x`(σ)−L(σ) =
∑
σ∈Sn

xeinv(σ) =

(
n⌈
n
2

⌉) n∏
i=1

(
1− xd

i
2
e

1− x

)
.

Proof. Consider the subgroups

So := 〈(i, i+ 2) : i ≡ 1 (mod 2)〉 ' Sdn2 e

and

Se := 〈(i, i+ 2) : i ≡ 0 (mod 2)〉 ' Sbn2 c.

Let πo and πe denote the natural projections from Sn onto So and Se, respectively. It is

easy to see that einv(σ) = inv(πo(σ)) + inv(πe(σ)). Therefore,

(3.2)
∑

σ∈So×Se

xeinv(σ) =

 ∑
σ∈Sdn2 e

xinv(σ)


 ∑
σ∈Sbn2 c

xinv(σ)

 =

n∏
i=1

(
1− xd

i
2
e

1− x

)
.

The proposition follows, as

Sn =
⋃̇

τ∈Gn
τ(So × Se)

and the identity in (3.2) also holds on all of the

(
n⌊
n
2

⌋) cosets. �

The following is a straightforward corollary of this formula.

Corollary 3.6. The polynomial
∑

σ∈Sn x
einv(σ) is symmetric and unimodal for all n ∈ N.

Remark 3.7. The proof of Proposition 3.5 shows that similar results hold for the polynomials

giving the distribution of inversions between positions which are congruent modulo any positive

integer. More precisely, for k, n ∈ N and σ ∈ Sn, let invk,0(σ) denote the number of inversions

between positions congruent modulo k in σ,

(3.3) invk,0(σ) = |{(i, j) ∈ Inv(σ) : j − i ≡ 0 (mod k)}|.

If n = mk + r for some m ∈ N0 and 0 ≤ r < k then

∑
σ∈Sn

xinvk,0(σ) =

(
n

m, . . . ,m︸ ︷︷ ︸
k−r

,m+ 1, . . . ,m+ 1︸ ︷︷ ︸
r

)(∑
σ∈Sm

xinv(σ)

)k−r ∑
σ∈Sm+1

xinv(σ)

r

=

(
n

m, . . . ,m︸ ︷︷ ︸
k−r

,m+ 1, . . . ,m+ 1︸ ︷︷ ︸
r

) n∏
i=1

[⌈
i

k

⌉]
x

.
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It is clear that the odd Schubert variety attached to a permutation σ ∈ Sn does not really

depend on the permutation, but only on its odd diagram. While it is well known that diagrams

are in bijection with permutations, this is not the case for odd diagrams. Indeed, already in S3

there are two permutations with the same odd diagram: Do([2, 1, 3]) = {(1, 1)} = Do([3, 1, 2]).

It is therefore a natural and interesting problem to characterize odd diagrams of permutations.

This is probably not an easy task since no characterization of (ordinary) diagrams seems to be

known. Also, odd diagrams are probably not equivalent to any known combinatorial objects.

In fact, if we let on be the number of different odd diagrams of permutations in Sn then the

first values of the sequence {on}n∈N are 1, 2, 5, 17, 70, 351, 2041, 13732, and this sequence is

new in the OEIS ([10, A335926]).

While we are unable to characterize odd diagrams, we can characterize a closely related set.

For σ ∈ Sn let

Invo(σ) := {(i, j) ∈ Inv(σ) : j 6≡ i (mod 2)}.

We call Invo(σ) the odd inversion set of σ. Note that | Invo(σ)| = L(σ) and that Invo(σ) ⊂ OSn
where OSn := {(i, j) ∈ [n]2 : i < j, j 6≡ i (mod 2)} is the odd staircase of size n.

The following result follows easily from our definitions.

Lemma 3.8. Let σ ∈ Sn and (i, j) ∈ [n]2. Then (i, σ(j)) ∈ Do(σ) if and only if (i, j) ∈
Invo(σ).

We now characterize the odd inversion sets of permutations. Recall that the Turán graph

(see, e.g., [8]) is the complete bipartite graph Tn := ([n], En) where, if i, j ∈ [n], then {i, j} ∈
En if and only if i 6≡ j (mod 2).

Given I ⊆ OSn we define an orientation AI of Tn as follows. Let {i, j}< ∈ En. Then we let

i→ j in AI if and only if (i, j) ∈ I. So, for example, for I = {(1, 4), (2, 3), (2, 5), (3, 4)} we get

the orientation of T5 in Figure 2. We then have the following simple characterization of odd

inversion sets of permutations in terms of orientations of Tn.

Proposition 3.9. Let I ⊆ OSn. Then there is a permutation σ ∈ Sn such that I = Invo(σ)

if and only if AI is acyclic.

Proof. Suppose first that I = Invo(σ) for some σ ∈ Sn. Then we have that, for all {i, j}< ∈ En,

i→ j in AI if and only if σ(i) > σ(j), so AI is acyclic.

Conversely, suppose that AI is acyclic. It is then easy to see, by induction on the number

of vertices, that given any acyclic orientation of a graph D = (V,E) there is a bijection

f : V → [|V |] such that if {x, y} ∈ E then x → y if and only if f(x) > f(y). Indeed, as

the orientation is acyclic there is either a source or a sink v ∈ V . Say v is a source. Now

define f(v) := |V |, remove v and all edges incident to it from D and argue by induction. In

particular, there is σ ∈ Sn such that i → j if and only if σ(i) > σ(j) for all {i, j}< ∈ En. So

I = Invo(σ). �

We illustrate the preceding result with an example.

Example 3.10. Given σ = [3, 5, 4, 1, 2] ∈ S5 we have Invo(σ) = {(1, 4), (2, 3), (2, 5), (3, 4)},
which defines the acyclic orientation in Figure 2. Conversely, given I = {(1, 4), (2, 3), (2, 5), (3, 4)},
following the steps of the induction and maintaining notation from the above proof we get:

f(2) = 5, f(1) = 4, f(3) = 3, f(5) = 2 and f(4) = 1, which defines the permutation

τ = [4, 5, 3, 1, 2] with Invo(τ) = I. As expected, this is not the only permutation of S5 with

this odd inversion set. There are 6 permutations with odd inversion set equal to I: [2, 5, 3, 1, 4],

[2, 5, 4, 1, 3], [3, 5, 2, 1, 4], [4, 5, 2, 1, 3], σ and τ .
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5

3

1

4

2

Figure 2. Ayclic orientation of T5 defined by I = {(1, 4), (2, 3), (2, 5), (3, 4)}

We conclude this section by giving several necessary conditions on a subset of [n]2 to be the

odd diagram of a permutation. It is easy to see that to characterize subsets of [n]2 which are

odd diagrams of a permutation it is enough to consider those that have at least one element

in the first row or column.

Proposition 3.11. Let S ⊆ [2, n]2. Then there exists σ ∈ Sn such that Do(σ) = S if and

only if there exists τ ∈ Sn−1 such that Do(τ) = {(x− 1, y − 1) : (x, y) ∈ S}.

Proof. Suppose there is σ ∈ Sn such that S = Do(σ). Then σ−1(1) = 1 (otherwise (σ−1(1)−
1, 1) ∈ Do(σ)). So τ = [σ(2)−1, . . . , σ(n)−1] ∈ Sn−1 is the desired permutation. Conversely, if

τ ∈ Sn−1 is such that Do(τ) = {(x−1, y−1) : (x, y) ∈ S} then σ = [1, τ(1)+1, . . . , τ(n−1)+1]

has odd diagram equal to S. �

Note that the previous proof implies that if an odd diagram does not have any elements in

the first column, then it has no elements in the first row.

The following result gives some necessary enumerative conditions for a subset of [n]2 to be

the odd diagram of a permutation in Sn.

Proposition 3.12. Let σ ∈ Sn and S := Do(σ). Then:

(i) if (i, j) ∈ S then |{k ∈ [j − 1] : (i, k) /∈ S}| ≤ min{bn+i−2
2 c, j − 1};

(ii) if (i, j) ∈ S then |{k ∈ [i− 1] : (k, j) /∈ S}| ≤ min{d i+2j−3
2 e, i− 1};

(iii) if i ∈ [n] then |{j ∈ [n] : (i, j) ∈ S}| ≤ dn−i2 e;
(iv) if j ∈ [n] then |{i ∈ [n] : (i, j) ∈ S}| ≤ min{dn−1

2 e, n− j}.

Proof. Suppose that (i, j) ∈ S. Let k ∈ [j− 1] be such that (i, k) /∈ S. Then either σ−1(k) < i

or σ−1(k) > i and σ−1(k) ≡ i (mod 2). But there are at most i − 1 possibilities in the first

case, and at most bn−i2 c in the second case. This proves (i).

Similarly, let (i, j) ∈ S, and k ∈ [i − 1] be such that (k, j) /∈ S. Then either σ(k) < j or

k 6≡ i (mod 2), and there are at most j − 1 possibilities in the first case and at most d i−1
2 e in

the second one.

Finally, if i, j ∈ [n] are such that (i, j) ∈ S then σ−1(j) > i and σ−1(j) 6≡ i (mod 2), which

proves (iii). The proof of (iv) is analogous and is omitted. �

The next proposition collects a number of configurations which cannot occur in odd dia-

grams (see also Figures 3 and 4).

Proposition 3.13. Let σ ∈ Sn and S := Do(σ). Then:

(i) if (i, j), (k, l) ∈ S with i ≤ k, j ≥ l, and i ≡ k (mod 2) then (i, l) ∈ S;
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...

· · · ? · · ·

· · · ? · · ·

· · · ? · · ·
· · · ? · · ·

?

i1

i2

ik

ik+1

column j
? = element of the odd diagram

k + 1 congruent rows

with at least one star

in [j, j + k − 1] in the

first k rows

no star in positions

(i1, j + k), . . . , (ik, j + k)

k

Figure 3. A forbidden configuration for odd diagrams

(ii) if (i, j), (k, l) ∈ S with i < k, j ≥ l, and i 6≡ k (mod 2) then (i, l) /∈ S;

(iii) if {i1, . . . , ik+1}< ⊆ [n] and j ∈ [n] are such that ir ≡ ir+1 (mod 2), {ir} × [j, j + k −
1] ∩ S 6= ∅, and (ir, j + k) /∈ S for r ∈ [k], then (ik+1, j + k) /∈ S;

(iv) if {j1, . . . , jd k+1
2
e+1}< ⊆ [n], and i1, . . . , id k+1

2
e ∈ [i, i+ k− 1] are such that (ir, jr) ∈ S,

(i+ k, jr) /∈ S, and ir ≡ i+ k (mod 2) for r = 1, . . . , dk+1
2 e, then (i+ k, jd k+1

2
e+1) /∈ S;

(v) if j is the minimum index for which ([n] × [j]) ∩ S 6= ∅, then if i ∈ [n] is such that

(i, j) ∈ S and ({i+ 1} × [j + 1, n]) ∩ S 6= ∅ then (i+ 2, j) ∈ S;

(vi) if (i, j) ∈ [n−2]×[2, n−1] are such that (i, j), (i+2, j−1) ∈ S and (i+1, j), (i+2, j) 6∈ S
then {i+ 1} × [j + 1, n] ∩ S = ∅.

Proof. We first prove (i). Since (i, j), (k, l) ∈ S we have that σ(i) > j, σ−1(l) > k, and

σ−1(l) 6≡ k (mod 2). Hence σ−1(l) 6≡ i (mod 2) so (i, l) ∈ Do(σ).

The proof of (ii) is identical, except that now σ−1(l) ≡ i (mod 2) so (i, l) /∈ Do(σ).

We now prove (iii) (see Figure 3). Suppose, by contradiction, that (ik+1, j + k) ∈ Do(σ).

Then σ−1(j + k) > ik+1 and σ−1(j + k) 6≡ ik+1 (mod 2). Let r ∈ [k]. Since (ir, j + k) /∈ S,

by what we have just observed we have that σ(ir) < j + k. On the other hand , since

{ir} × [j, j + k − 1] ∩ S 6= ∅, σ(ir) > j. So σ(ir) ∈ [j + 1, j + k − 1] for all r ∈ [k], which is a

contradiction.

To prove (iv) suppose, by contradiction, that (i + k, jd k+1
2
e+1) ∈ S. Then σ(i + k) >

jd k+1
2
e+1. Let r ∈ [dk+1

2 e]. Since (ir, jr) ∈ S, we have that σ(ir) > jr, σ
−1(jr) 6≡ ir (mod 2),

and σ−1(jr) > ir. So σ−1(jr) 6≡ i + k (mod 2). On the other hand, since (i + k, jr) /∈ S,

σ−1(jr) < i+ k. So σ−1(jr) ∈ [i+ 1, i+ k− 1] and σ−1(jr) 6≡ i+ k (mod 2) for all r ∈ [dk+1
2 e],

which is a contradiction. This proves (iv).

Parts (v) and (vi) are easy to check (see Figure 4). �

Note that for j = l part (ii) of Proposition 3.13 implies that if (i+ 1, j) ∈ S then (i, j) /∈ S.

In the following result, we collect a few more conditions satisfied by odd diagrams which

say that some configurations can only appear in certain areas of the square grid.

Proposition 3.14. Let σ ∈ Sn and S := Do(σ). Then:

(i) if i, j, k ∈ [n] are such that (i+ 2k − 1, j + k − 1) ∈ [n]2, {i} × [j, j + k − 1] ⊆ S, and

[i+ 1, i+ 2k − 1]× [j, j + k − 1] ⊆ [n]2 \ S, then j ≥ k;

(ii) if i, j ∈ [n], k ∈ N are such that (i+ 2k, j + 2k) ∈ [n]2, and

(i+ a, j + b) ∈ S ⇔ a ≡ b ≡ 0 (mod 2), and a+ b ≤ 2k
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(a) (b)

? in (i, j)

?
· · · ? · · ·

at least one ? in [j + 1, n]

in row i + 1empty columns

?

?
· · · ? · · ·

? at (i, j) and (i + 2, j − 1)

and at least one ? in [j+1, n]

in row i + 1

? = element of the odd diagram

Figure 4. Forbidden configurations for odd diagrams

? ? ?

?

?

(i, j)

?

? = element of the odd diagram

Figure 5. This configuration can only appear if i+ j ≥ 4

for all (a, b) ∈ [0, 2k]2, then i+ j ≥ k + 2.

Proof. We first prove (i). Since {i} × [j, j + k − 1] ⊆ S we have that σ−1(j + r − 1) > i and

σ−1(j+r−1) 6≡ i (mod 2) for all r ∈ [k]. Therefore there is r0 ∈ [k] such that σ−1(j+r0−1) ≥
i+ 2k−1. Hence, since {i+ 2t}× [j, j+k−1] ⊆ [n]2 \S for all t ∈ [k−1], σ(i+ 2t) ≤ j+k−1

for all t ∈ [k − 1], so σ(i+ 2t) < j for all t ∈ [k − 1], and the result follows.

We now prove (ii) (see Figure 5). We show that

(3.4) |{a ∈ [k] : σ(i+ 2a− 1) < j} ∪ {b ∈ [k] : σ−1(j + 2b− 1) < i}| ≥ k,

which implies our claim.

We proceed by induction on k ≥ 0. Let k = 1. Assume, by contradiction, that (3.4)

fails. Then σ(i + 1) ≥ j and σ−1(j + 1) ≥ i. Hence, since (i + 2, j) ∈ S and (i, j + 1) /∈ S,

σ(i+ 1) ≥ j+ 2. Similarly, since (i, j+ 2) ∈ S and (i, j+ 1) /∈ S, σ−1(j+ 1) ≥ i+ 2. But then

either (i, j+1) ∈ S (if σ−1(j+1) 6≡ i (mod 2)) or (i+1, j+1) ∈ S (if σ−1(j+1) ≡ i (mod 2)),

which is a contradiction. So assume k ≥ 2. Since (i, j + 2k) ∈ S we have that σ(i) > j + 2k,

σ−1(j + 2k) > i, and σ−1(j + 2k) 6≡ i (mod 2).

If σ−1(j + 2k) = i+ 1 then σ−1(j + 2b− 1) < i for all b ∈ [k] (else either (i, j + 2b− 1) ∈ S
or (i+ 1, j + 2b− 1) ∈ S for some b ∈ [k]) and the claim holds.

Assume now that σ−1(j + 2k) = i+ 2b+ 1 for some b ∈ [k − 1] then j + 2k − 1 = σ(i+ 2)

(else (i+2, j+2k) ∈ S). Hence σ(i+1) < j (for if σ(i+1) > j+2k then (i+1, j+2k−1) ∈ S,

while if j ≤ σ(i+ 1) < j+ 2k then necessarily σ(i+ 1) = j+ 2a− 1 for some a ∈ [k− 1], which

implies that (i, j + 2a − 1) ∈ S, which again contradicts our hypotheses). In an analogous

way one concludes that σ−1(j + 1) < i (for if σ−1(j + 1) ≥ i+ 2k then either (i, j + 1) ∈ S or

(i+ 2b+ 1, j + 1) ∈ S, while if i ≤ σ−1(j + 1) < i+ 2k then σ−1(j + 1) 6≡ i (mod 2), so again

(i, j + 1) ∈ S). Now, by our induction hypothesis (applied to i+ 2, j + 2, k − 2) we conclude
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that

|{a ∈ [k − 2] : σ(i+ 2a+ 1) < j + 2} ∪ {b ∈ [k − 2] : σ−1(j + 2b+ 1) < i+ 2}| ≥ k − 2.

But if σ(i+2a+1) < j+2 for some a ∈ [k−2] then σ(i+2a+1) < j (for if σ(i+2a+1) = j+1

then (i, j + 1) ∈ S, while σ(i + 2a + 1) 6= j since (i + 2k, j) ∈ S). Also, since σ(i + 1) < j,

and σ(i) > j + 2k, if σ−1(j + 2b + 1) < i + 2 for some b ∈ [k − 2], then σ−1(j + 2b + 1) < i.

Therefore

|{a ∈ [k − 2] : σ(i+ 2a+ 1) < j} ∪ {b ∈ [k − 2] : σ−1(j + 2b+ 1) < i}| ≥ k − 2,

and this implies (3.4) since σ(i+ 1) < j and σ−1(j + 1) < i.

Finally, assume that σ−1(j + 2k) = i+ 2b+ 1 for some b ≥ k. Then as in the previous case

we conclude that j+ 2k− 1 = σ(i+ 2) and σ(i+ 1) < j. Therefore σ(i+ 4) = j+ 2k− 3 (for if

σ(i+4) > j+2k then (i+4, j+2k) ∈ S, while if σ(i+4) = j+2k−2 then (i+2, j+2k−2) /∈ S).

This implies that σ(i+ 3) < j (for if σ(i+ 3) > j + 2k− 3 then (i+ 3, j + 2k− 3) ∈ S). Now,

by our induction hypothesis (applied to i+ 4, j, k − 2) we have that

|{a ∈ [k − 2] : σ(i+ 2a+ 3) < j} ∪ {b ∈ [k − 2] : σ−1(j + 2b− 1) < i+ 4}| ≥ k − 2.

But if σ−1(j + 2b− 1) < i+ 4 for some b ∈ [k − 2] then σ−1(j + 2b− 1) < i so

|{a ∈ [k − 2] : σ(i+ 2a+ 3) < j} ∪ {b ∈ [k − 2] : σ−1(j + 2b− 1) < i}| ≥ k − 2

and this proves (3.4) since σ(i+ 1) < j and σ(i+ 3) < j.

This concludes the induction step and hence the proof. �

The conditions in Propositions 3.12, 3.13 and 3.14 are also sufficient for S ⊆ [n]2, with n ≤ 4,

to be the odd diagram of a permutation. However, for n ≥ 5 they fail to characterize these

subsets. For instance, {(1, 1), (1, 2), (3, 2), (4, 4)} is not the odd diagram of any permutation.

4. Shifting and reversing

In this section we derive a number of results concerning operations that can be performed

on the subsets defining a descent class, after which the sign-twisted generating function of the

odd length remains the same or changes in a controlled way. We also give sufficient conditions

on a descent class for the corresponding sign-twisted generating function to be zero, and we

compute it explicitly for the descent class of the alternating permutations.

Recall that a permutation in the descent class DIJ(Sn) is a permutation which is increasing

in the positions corresponding to I ∪ (I + 1) and decreasing in J ∪ (J + 1).

The proofs of the following two results are similar to those of [2, Lemma 3.1 and Propo-

sition 3.3]. However, for the reader’s convenience, and for completeness, we provide proofs

here. Our first lemma shows that the sign-twisted generating function of the odd length is

zero on the non-chessboard elements of a descent class in which the ascents and the descents

are disjoint.

Lemma 4.1. Let I, J ⊆ [n− 1], I ∩ J = ∅. Then∑
σ∈DIJ (Sn)

(−1)`(σ)xL(σ) =
∑

σ∈DIJ (Cn)

(−1)`(σ)xL(σ).

Proof. Let σ ∈ DIJ(Sn) \ DIJ(Cn). Then there exists i ∈ [n− 1] such that σ−1(i) ≡ σ−1(i+ 1)

(mod 2) (else either σ−1(i) ≡ i (mod 2) for all i ∈ [n] or σ−1(i) ≡ i + 1 (mod 2) for all

i ∈ [n] so σ ∈ Cn). Let i be minimal with this property and define σ∗ = siσ. This is a well
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defined involution on DIJ(Sn) \DIJ(Cn) since |σ−1(i)−σ−1(i+ 1)| ≥ 2. But L(σ∗) = L(σ) and

`(σ∗) = `(σ)± 1, which implies the result. �

The next result is the first of a series of invariance results for the sign-twisted generating

function of the odd length over a descent class DIJ(Sn). It shows that a connected component

of odd cardinality of the ascents can be shifted or enlarged of one unit to the right without

changing the generating function, as long as it remains a connected component.

Proposition 4.2. Let I, J ⊆ [n− 1], I ∩ J = ∅. Let i ∈ N, k ∈ N0 be such that [i, i+ 2k] ⊆ I
is a connected component of I ∪ J and i+ 2k + 2 6∈ I ∪ J .

Then

(4.1)
∑

σ∈DIJ (Sn)

(−1)`(σ)xL(σ) =
∑

σ∈DI∪ĨJ (Sn)

(−1)`(σ)xL(σ) =
∑

σ∈DĨJ (Sn)

(−1)`(σ)xL(σ)

where Ĩ := (I \ {i}) ∪ {i+ 2k + 1}.

Proof. First note that, by our hypotheses, (I ∪ Ĩ) ∩ J = ∅. We have∑
σ∈DIJ (Sn)

(−1)`(σ)xL(σ) =
∑

σ∈DIJ (Sn):
σ(i)>σ(i+2k+2)

(−1)`(σ)xL(σ) +
∑

σ∈DIJ (Sn):σ(i+2k+1)<
σ(i+2k+2)

(−1)`(σ)xL(σ)

+
2k+1∑
j=1

 ∑
σ∈DIJ (Sn): σ(i+j−1)<
σ(i+2k+2)<σ(i+j)

(−1)`(σ)xL(σ)

 .(4.2)

Let r ∈ [k]. Note that, by our hypotheses, i − 1 /∈ J and i + 2k + 1 /∈ J . Therefore the map

σ 7→ σ̃ := σ (i+2k+2 , i+2r) is a bijection between {σ ∈ DIJ(Sn) : σ(i+2r) < σ(i+2k+2) <

σ(i + 2r + 1)} and {σ ∈ DIJ(Sn) : σ(i + 2r − 1) < σ(i + 2k + 2) < σ(i + 2r)}. Furthermore,

`(σ̃) = `(σ) + 1 and L(σ̃) = L(σ) so∑
σ∈DIJ (Sn) :σ(i+2r)<
σ(i+2k+2)<σ(i+2r+1)

(−1)`(σ)xL(σ) = −
∑

σ∈DIJ (Sn) :σ(i+2r−1)<
σ(i+2k+2)<σ(i+2r)

(−1)`(σ)xL(σ).

Similarly, the bijection σ 7→ σ (i+ 2k + 2, i) shows that∑
σ∈DIJ (Sn) :

σ(i+2k+2)<σ(i)

(−1)`(σ)xL(σ) = −
∑

σ∈DIJ (Sn) :σ(i)<
σ(i+2k+2)<σ(i+1)

(−1)`(σ)xL(σ).

Therefore, by (4.2), ∑
σ∈DIJ (Sn)

(−1)`(σ)xL(σ) =
∑

σ∈DIJ (Sn) :σ(i+2k+1)<
σ(i+2k+2)

(−1)`(σ)xL(σ)

and the first equality in (4.1) follows.

The proof of the second equality is similar, and is therefore omitted. �

Note that the proof of the previous result actually yields that if I, J ⊆ [n− 1] are such that

I ∩ J = ∅, and if i ∈ N and k ∈ N0 are such that [i, i + 2k + 1] is a connected component of

I ∪ J and i+ 2k + 1 ∈ J , [i, i+ 2k] ⊆ I, then Ĩ ∩ J 6= ∅, hence∑
σ∈DIJ (Sn)

(−1)`(σ)xL(σ) = 0.

This is a special case of a more general fact (see Proposition 5.1).
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The following is the “left” version of Proposition 4.2. Informally, it shows that a connected

component of odd cardinality of the ascents can be shifted or enlarged of one unit to the

left without changing the sign-twisted generating function, as long as it remains a connected

component.

Proposition 4.3. Let I, J ⊆ [n−1], I∩J = ∅. Let i ∈ N, k ∈ N0 be such that [i+1, i+2k+1] ⊆
I is a connected component of I ∪ J , and i− 1 6∈ I ∪ J . Then∑

σ∈DIJ (Sn)

(−1)`(σ)xL(σ) =
∑

σ∈DI∪ĪJ (Sn)

(−1)`(σ)xL(σ) =
∑

σ∈DĪJ (Sn)

(−1)`(σ)xL(σ)

where Ī := (I \ {i+ 2k + 1}) ∪ {i}.

Proof. Under our hypotheses we have that (I ∪ Ī)∩J = ∅, [i, i+2k] is a connected component

of Ī ∪ J , [i, i+ 2k] ⊆ Ī, and i+ 2k + 2 6∈ Ī ∪ J , so the result follows from Proposition 4.2. �

We now show that a connected component of even cardinality of the descents can be “trans-

formed” (or “reversed”) into a connected component of the ascents, by changing the generating

function by a simple factor.

Lemma 4.4. Let I, J ⊆ [n− 1], I ∩ J = ∅, and i, k ∈ N be such that K := [i, i+ 2k − 1] is a

connected component of I ∪ J , K ⊆ J . Then

(4.3)
∑

σ∈DIJ (Cn,±)

(−1)`(σ)xL(σ) = (−1)kxk(k+1)
∑

σ∈DI∪K
J\K (Cn,±)

(−1)`(σ)xL(σ).

In particular,

(4.4)
∑

σ∈DIJ (Sn)

(−1)`(σ)xL(σ) = (−1)kxk(k+1)
∑

σ∈DI∪K
J\K (Sn)

(−1)`(σ)xL(σ).

Proof. We have ∑
σ∈DIJ (Cn,+)

(−1)`(σ)xL(σ) =
∑

τ∈DI∪K
J\K (Cn,+)

(−1)`(τ̄)xL(τ̄),

where τ̄ := [τ(1), . . . , τ(i− 1), τ(i+ 2k), . . . , τ(i+ 1), τ(i), τ(i+ 2k+ 1), . . . , τ(n)]. But `(τ̄) =

`(τ) + (2k + 1)k and, by Proposition 2.2 L(τ̄) = L(τ) + k(k + 1), thus∑
τ∈DI∪K

J\K (Cn,+)

(−1)`(τ̄)xL(τ̄) = (−1)kxk(k+1)
∑

τ∈DI∪K
J\K (Cn,+)

(−1)`(τ)xL(τ)

as desired. Similarly for Cn,−. �

In a similar way, it is easy to determine the generating function on the descent class obtained

by transforming all the descents into ascents, and conversely, as shown in the following result.

Proposition 4.5. Let I, J ⊆ [n− 1], I ∩ J = ∅. Then∑
σ∈DIJ (Sn)

(−1)`(σ)xL(σ) = (−1)`(w0)xL(w0)
∑

σ∈DJI (Sn)

(−1)`(σ)

(
1

x

)L(σ)

.

Proof. It is clear that the map σ 7→ w0σ is a bijection from DIJ(Sn) to DJI (Sn). Therefore, by

Proposition 2.2 we have∑
σ∈DIJ (Sn)

(−1)`(σ)xL(σ) =
∑

τ∈DJI (Sn)

(−1)`(w0τ)xL(w0τ)

= (−1)`(w0)xL(w0)
∑

τ∈DJI (Sn)

(−1)`(τ)

(
1

x

)L(τ)

.
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�

Remark 4.6. The bijection σ 7→ w0σ in the proof of Proposition 4.5 restricts to a bijection

between chessboard elements of the relevant descent classes. In particular, if n is even it is a

bijection between DIJ(Cn,+) and DJI (Cn,−).

The sign-twisted generating function is also invariant under left and right shifting of con-

nected components of the descents, under certain hypotheses. The next two results are anal-

ogous to Proposition 4.2 and 4.3, respectively. The first shows that a connected component

of odd cardinality of the descents can be shifted (or enlarged of one unit) to the right, as long

as it remains a connected component.

Proposition 4.7. Let I, J ⊆ [n− 1], I ∩ J = ∅. Let i ∈ N, k ∈ N0 be such that [i, i+ 2k] is

a connected component of I ∪ J , [i, i+ 2k] ⊆ J , and i+ 2k + 2 /∈ I ∪ J . Then∑
σ∈DIJ (Sn)

(−1)`(σ)xL(σ) =
∑

σ∈DI
J∪J̃

(Sn)

(−1)`(σ)xL(σ) =
∑

σ∈DI
J̃

(Sn)

(−1)`(σ)xL(σ),

where J̃ := (J \ {i}) ∪ {i+ 2k + 1}.

Proof. By Proposition 4.2 we have∑
σ∈DJI (Sn)

(−1)`(σ)xL(σ) =
∑

σ∈DJ∪J̃I (Sn)

(−1)`(σ)xL(σ) =
∑

σ∈DJ̃I (Sn)

(−1)`(σ)xL(σ)

so the result follows from Proposition 4.5. �

In a similar way, using Proposition 4.3, we obtain the following invariance result under left

shifting of a connected component of odd cardinality of the descents.

Proposition 4.8. Let I, J ⊆ [n−1], I∩J = ∅, and i ∈ N, k ∈ N0 be such that [i+1, i+2k+1]

is a connected component of I ∪ J , [i+ 1, i+ 2k + 1] ⊆ J , and i− 1 /∈ I ∪ J . Then∑
σ∈DIJ (Sn)

(−1)`(σ)xL(σ) =
∑

σ∈DI
J∪J̄ (Sn)

(−1)`(σ)xL(σ) =
∑

σ∈DI
J̄

(Sn)

(−1)`(σ)xL(σ),

where J̄ := (J \ {i+ 2k + 1}) ∪ {i}.

Computer calculations suggest that the operation of shifting can be performed under weaker

hypotheses, namely even if the connected component to be shifted is not contained in I (as

required in Proposition 4.2) and therefore not contained in J (as in Proposition 4.7). More

precisely, we conjecture the following.

Conjecture 4.9. Let I, J ⊆ [n−1], I∩J = ∅. Let i ∈ N, k ∈ N0 be such that i+2k+2 6∈ I∪J
and [i, i + 2k] is a connected component of I ∪ J , say [i, i + 2k] = A ∪ B, where A ⊆ I and

B ⊆ J . Then ∑
σ∈DIJ (Sn)

(−1)`(σ)xL(σ) =
∑

σ∈DĨ
J̃

(Sn)

(−1)`(σ)xL(σ)

where Ĩ := (I \A) ∪ (A+ 1) and J̃ := (J \B) ∪ (B + 1).
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5. Descent classes

In this section we investigate the sign-twisted generating function of the odd length over

descent classes. More precisely, we give sufficient conditions on a descent class for the gener-

ating function to be zero, and we compute it explicitly for the alternating permutations and

for a general family of descent classes which includes all quotients.

Let I, J ⊆ [n− 1], I ∩ J = ∅, and i ∈ [n]. We say that i is a peak of DIJ(Sn) if i ∈ (I + 1) \ I
or i ∈ J \ (J + 1). Similarly, i is a valley if i ∈ I \ (I + 1) or i ∈ (J + 1) \ J .

Proposition 5.1. Let I, J ⊆ [n− 1], I ∩ J = ∅, and i ∈ N, k ∈ N0 be such that [i, i+ 2k + 1]

is a connected component of I ∪ J and v 6≡ p (mod 2) for any v, p ∈ [i, i+ 2k+ 2], v valley, p

peak. Then ∑
σ∈DIJ (Sn)

(−1)`(σ)xL(σ) = 0.

Proof. Let σ ∈ DIJ(Sn). Let {a1, . . . , a2k+3}< := {σ(i), σ(i + 1), . . . , σ(i + 2k + 2)}. Let

v := σ−1(a1). Then v is a valley (for if i < v < i+ 2k + 2 then σ(v − 1) > σ(v) < σ(v + 1) so

v ∈ I ∩ (J + 1), while if v = i then σ(v) < σ(v + 1) so v ∈ I \ (I + 1), and if v = i + 2k + 2

then σ(v − 1) > σ(v) so v ∈ (J + 1) \ J). Similarly, σ−1(a2k+3) is a peak. Therefore, by our

hypotheses, σ−1(a1) 6≡ σ−1(a2k+3) (mod 2).

Let j := min{r ∈ [2k + 2] : σ−1(ar) ≡ σ−1(ar+1) (mod 2)} (note that j certainly exists for

if σ−1(a1) 6≡ σ−1(a2) 6≡ · · · 6≡ σ−1(a2k+3) (mod 2) then σ−1(a1) ≡ σ−1(a2k+3) (mod 2) which

is a contradiction), and σ̂ := (aj , aj+1)σ. Then σ̂ ∈ DIJ(Sn), `(σ̂) = `(σ) ± 1, L(σ̂) = L(σ)

and the map σ 7→ σ̂ is an involution. The result follows. �

Note that the converse of the previous result does not hold. For example, if n = 8, I =

{1, 2, 4}, and J = {3, 5, 6} then the sign-twisted generating function for DIJ(S8) is zero but

DIJ(S8) has peaks {3, 5} and valleys {1, 4, 7}. On the other hand, under the weaker hypothesis

that there exist at least one peak and one valley with different parities the generating function

is not, in general, zero. For example, if n = 8, I = {1, 2, 4}, and K = {3, 5, 6, 7} then

DIK(S8) has peaks {3, 5} and valleys {1, 4, 8} but the corresponding generating function is

−x6(1 + x2 + x4). It would be interesting to find necessary and sufficient conditions on I and

J for the sign-twisted generating function on DIJ(Sn) to be zero.

Proposition 5.1 implies that if I ∪ J has a “zig-zag” connected component K of even car-

dinality (i.e., if all even elements of K are in I and all odd ones are in J , or conversely) then

the corresponding sign-twisted generating function is zero. Thus, this is in particular true for

the alternating permutations of a symmetric group of odd degree. This makes it natural to

investigate the corresponding generating function for all alternating permutations. For n ∈ N
we let

E−n := {σ ∈ Sn : σ(1) > σ(2) < σ(3) > · · · },

and

E+
n := {σ ∈ Sn : σ(1) < σ(2) > σ(3) < · · · }.

We call the elements of E−n (resp. E+
n ) alternating (resp. reverse alternating) permutations

(we refer the reader to, e.g., [11, §1.6] for further information about alternating permutations).

Proposition 5.2. Let n ∈ N. Then∑
σ∈E−n

(−1)`(σ)xL(σ) =

{
0, if n ≡ 1 (mod 2),

(−x)
n
2 , if n ≡ 0 (mod 2),

(5.1)
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and ∑
σ∈E+

n

(−1)`(σ)xL(σ) =

{
0, if n ≡ 1 (mod 2),

x
n
2

(n
2
−1), if n ≡ 0 (mod 2).

(5.2)

Proof. Note that E−n = DIJ(Sn) where I := {i ∈ [n − 1] : i ≡ 0 (mod 2)} and J := {i ∈
[n− 1] : i ≡ 1 (mod 2)} so the first equation in (5.1) follows from Proposition 5.1. So assume

that n ≡ 0 (mod 2), say n = 2m for some m ∈ N. By Lemma 4.1 we have∑
σ∈E−n

(−1)`(σ)xL(σ) =
∑

σ∈DIJ (Cn)

(−1)`(σ)xL(σ).

We claim that DIJ(Cn,+) = ∅. Let σ ∈ DIJ(Cn,+). Let i := σ−1(1). Then i ≡ 1 (mod 2) so

i ∈ J and hence σ(i) > σ(i + 1) which is a contradiction. Let now σ ∈ DIJ(Cn,−). We claim

that then

σ = [2, 1, 4, 3, 6, 5, . . . , 2m, 2m− 1].

We prove this claim by induction on m ∈ N. If m = 1 the claim is clear. Let m ≥ 2. Let

a := σ−1(2m− 1). Then a ≡ 0 (mod 2) so a = 2m (else σ(a− 1), σ(a+ 1) > σ(a) = 2m− 1)

and hence σ(2m−1) = 2m. But σ|[2m−2] ∈ D
I∩[n−3]
J∩[n−3](Cn−2,−) so the claim follows by induction.

Since `([2, 1, 4, 3, . . . , 2m, 2m− 1]) = m = L([2, 1, 4, 3, . . . 2m, 2m− 1]) the second equation in

(5.1) follows.

Since the map σ 7→ w0 σ is an involution between E+
n and E−n , the equations in (5.2) follow

from those in (5.1) and Proposition 2.2. �

We now consider a general family of descent classes which includes all quotients. Let

I, J ⊆ [n− 1]. We say that I and J are unmixed if

(5.3) I ∩ J = (I + 1) ∩ J = I ∩ (J + 1) = ∅.

Let I, J ⊆ [n−1] be unmixed. Let I1, . . . , Is be the connected components of I and J1, . . . , Jt
be those of J . We say that (I, J) is compressed if |I1| ≡ · · · ≡ |Is| ≡ |J1| ≡ · · · ≡ |Jt| ≡ 1

(mod 2) and |[n − 1] \ (I ∪ J)| = s + t − 1. For instance, ({1, 7, 8, 9}, {3, 4, 5, 11, 12, 13}) is

compressed for n = 14 while ({1, 3}, {7, 8, 9, 11, 12, 13}) is not. Note that if I, J ⊆ [n− 1] are

unmixed and (I, J) is compressed then n− 1 = |I|+ |J |+ s+ t− 1 ≡ 1 (mod 2) so n is even.

Let now n = 2m ∈ N and let I, J be unmixed with connected components I1, . . . , Is, and

J1, . . . , Jt, respectively. Then I1, . . . , Is, J1, . . . , Jt are the connected components of I ∪ J .

Therefore
∑s

j=1

(
|Ij |+1

2

)
+
∑t

k=1

(
|Jk|+1

2

)
≤ m, with equality holding if and only if (I, J) is

compressed.

We can now state one of the main results of this section.

Theorem 5.3. Let I, J ⊆ [n− 1] be unmixed. Let I1, . . . , Is be the connected components of I

and J1, . . . , Jt be the connected components of J . Then we have

(5.4)
∑

σ∈DI
J

(Cn,+)

(−1)`(σ)xL(σ) = (−x)dxα(J)

[
b + d

b, d

]
x2

m∏
k=b+d+1

(1 − x2k),

if n is odd, while

∑
σ∈DIJ (Cn,+)

(−1)`(σ)xL(σ) =


(−x)dxα(J) [b]x2

[m]x2

[
b + d

b, d

]
x2

, if m = b+ d,

(−x)dxα(J)

[
b + d

b, d

]
x2

m−1∏
k=b+d+1

(1− x2k), otherwise,
(5.5)

and
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∑
σ∈DIJ (Cn,−)

(−1)`(σ)xL(σ) =


(−1)dxb+α(J) [d]x2

[m]x2

[
b + d

b, d

]
x2

, if m = b+ d,

−(−x)dxm+α(J)

[
b + d

b, d

]
x2

m−1∏
k=b+d+1

(1− x2k), otherwise,

(5.6)

if n is even, where m :=
⌊
n
2

⌋
, bj :=

⌊
|Ij |+1

2

⌋
, for j = 1, . . . , s, dk :=

⌊
|Jk|+1

2

⌋
, for k = 1, . . . , t,

b :=
∑s

i=1 bi, d :=
∑t

k=1 dk,b := b1, . . . , bs, d := d1, . . . , dt, and α(J) :=
∑t

k=1 d
2
k.

Proof. We let, for convenience, b̄j := bj + 1, d̄k := dk + 1, for j ∈ [s] and k ∈ [t], α̂(J) :=

α(J) + d, and α̌(J) := α(J)− d.

Before delving into the proof we think it useful to sketch the idea of it. If J has at least

one connected component of even size then by Lemma 4.4 this can be changed to a connected

component of I and we can proceed by induction. If I has a connected component of even

size (and all connected components of J have odd size) then by Propositions 4.2 and 4.3 we

can remove one of the endpoints from this connected component and then shift some of the

other connected components of I and J so that the resulting “empty spot” sits next to a

connected component of J , to which it can then be “added” by Propositions 4.7 or 4.8. The

resulting descent class now has a connected component of the descents of even size so can be

computed by induction as in the previous case. If all the connected components of I ∪ J are

of odd size but (I, J) is not compressed then there is either an “empty spot” to the right of

the rightmost connected component of I ∪ J , or to the left of the leftmost, or there are two

consecutive connected components of I ∪J separated by at least two empty spots. By shifting

the connected components of I ∪ J we can “move” this extra empty spot so that it sits next

to a connected component of J , to which it can then be “added”, and we can conclude as in

the previous case. If (I, J) is compressed then n is even and must appear immediately to the

right of a connected component of the ascents which allows us to “delete” n and compute the

generating function as a sum of generating functions of unmixed descent classes of Sn−1.

We proceed by induction on t ∈ N0, the number of connected components of the descents.

Let t = 0 (i.e., J = ∅). Then (I, ∅) is compressed if and only if b = n
2 so Theorem 5.4 reduces

to Theorem 2.4 in this case. Let now t ≥ 1.

Assume first that there exists i ∈ [t] such that |Ji| ≡ 0 (mod 2). Then by Lemma 4.4 and

our induction hypothesis we have∑
σ∈DIJ (Cn,+)

(−1)`(σ)xL(σ)=(−1)
|Ji|
2 x

|Ji|(|Ji|+2)

4

∑
σ∈DI∪Ji

J\Ji
(Cn,+)

(−1)`(σ)xL(σ)

= (−1)dixdid̄i(−1)d−dixα̂(J)−did̄i
[

b + d

b, d

]
x2

bn−1
2 c∏

k=b+d+1

(1− x2k),

so (5.4) and the second formula in (5.5) follow in this case.

Under the same hypothesis, for the odd chessboard elements we have∑
σ∈DIJ (C2m,−)

(−1)`(σ)xL(σ) = (−1)
|Ji|
2 x

|Ji|(|Ji|+2)

4

∑
σ∈DI∪Ji

J\Ji
(C2m,−)

(−1)`(σ)xL(σ)

= −(−1)dixdid̄i(−1)d−dixm+α̂(J)−did̄i
[

b + d

b, d

]
x2

m−1∏
k=b+d+1

(1− x2k),
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yielding the second formula in (5.6).

We may therefore assume that |J1| ≡ |J2| ≡ · · · ≡ |Jt| ≡ 1 (mod 2).

Assume now that there exists r ∈ [s] such that |Ir| ≡ 0 (mod 2). Then by repeated

application of Proposition 4.7 and 4.8, we have∑
σ∈DIJ (Cn,±)

(−1)`(σ)xL(σ) =
∑

σ∈DĨ
J̃

(Cn,±)

(−1)`(σ)xL(σ),

where Ĩ has connected components Ĩ1 ∪ · · · ∪ Ĩs, where |Ĩr| = |Ir| − 1 and |Ĩk| = |Ik|, for

k ∈ [s] \ {r} and J̃ has connected components J̃1 ∪ · · · ∪ J̃t, where |J̃1| = |J1| + 1 and

|J̃k| = |Jk|, for k ∈ [2, t], and the connected components of Ĩ ∪ J̃ are Ĩ1, . . . , Ĩs, J̃1, . . . , J̃t.

Since J̃ has a connected component of even cardinality, reasoning as in the previous case, and

observing that
⌊
|J̃1|+1

2

⌋
=
⌊
|J1|+1

2

⌋
= d1 and

⌊
|Ĩr|+1

2

⌋
=
⌊
|Ir|+1

2

⌋
= br, we conclude again by

induction.

We may therefore assume that |I1| ≡ · · · ≡ |Is| ≡ |J1| ≡ · · · ≡ |Jt| ≡ 1 (mod 2).

Suppose first that |[n− 1] \ (I ∪ J)| > s+ t− 1. Therefore either 1 /∈ I ∪ J or n− 1 /∈ I ∪ J
or there exists i ∈ [n − 1] such that i, i + 1 /∈ I ∪ J. In any of these cases we can apply

Propositions 4.7 and 4.8 to get∑
σ∈DIJ (Cn,±)

(−1)`(σ)xL(σ) =
∑

σ∈DĪ
J̄

(Cn,±)

(−1)`(σ)xL(σ),

where Ī has connected components Ī1, . . . , Īs such that |Īj | = |Ij | for j ∈ [s] and J̄ has

connected components J̄1, . . . , J̄t such that |J̄1| = |J1| + 1 and |J̄l| = |Jl| for l ∈ [2, t]. Then,

again, J̄ , has a connected component of even size so, reasoning as above (5.4), and the second

equations in (5.5) and (5.6) follow by induction, since
⌊
|J̄1|+1

2

⌋
=
⌊
|J1|+1

2

⌋
= d1.

We may therefore assume that |I1| ≡ · · · ≡ |Is| ≡ |J1| ≡ · · · ≡ |Jt| ≡ 1 (mod 2) and

|[n− 1] \ (I ∪J)| = s+ t− 1, i.e., that (I, J) is compressed. Then n ≡ 0 (mod 2), say n = 2m,

and m = b+d, and both the leftmost and the rightmost elements of any connected component

of J ∪ J are odd.

For i ∈ [s] let ai := max Ii + 1 and for i ∈ [t] let ci := min Ji. Then a1 ≡ · · · ≡ as ≡ 0

(mod 2) and c1 ≡ · · · ≡ ct ≡ 1 (mod 2). Therefore, if σ ∈ DIJ(C2m,+), then σ−1(2m) ∈
{a1, . . . , as}. Hence

∑
σ∈DIJ (C2m,+)

(−1)`(σ)xL(σ) =

s∑
j=1

∑
σ∈DIJ (C2m,+):

σ−1(2m)=aj

(−1)`(σ)xL(σ).

Fix j ∈ [s]. Let k := max{i ∈ [t] : ci < aj} (where k := 0 if {i ∈ [t] : ci < aj} = ∅). So

J1, . . . , Jk are to the left of aj , while Jk+1, . . . , Jt are to the right. Let τ̄ be obtained from

τ by removing the maximum (which is in position aj) and reversing the elements in each of

the blocks of ascents and descents that are to the right of aj , so reversing the elements in

positions [min Ii, ai] for each i = j + 1, . . . , s, and those in positions [ci,max Ji + 1] for each

i = k+1, . . . , t. Then the map τ 7→ τ̄ is a bijection between {σ ∈ DIJ(C2m,+) : σ−1(2m) = aj}
and Dϕj(I)ϕj(J)(C2m−1), where ϕj(I) := I1 ∪ · · · ∪ Ij−1 ∪ (Ij \ {aj − 1})∪ (Jk+1− 1)∪ · · · ∪ (Jt− 1)

and ϕj(J) := J1 ∪ · · · ∪ Jk ∪ (Ij+1 − 1) ∪ · · · ∪ (Is − 1).
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Furthermore, we have `(τ̄) = `(τ) +A and L(τ̄) = L(τ) +B, where, by Proposition 2.2

A =

s∑
r=j+1

(
|Ir|+ 1

2

)
−

t∑
h=k+1

(
|Jh|+ 1

2

)
− (2m− aj) =

s∑
r=j+1

br(2br − 1)−
t∑

h=k+1

dh(2dh − 1)− (2m− aj)

=

s∑
r=j+1

br(2br − 3)−
t∑

h=k+1

dh(2dh + 1),

B =

s∑
r=j+1

(
|Ir|+ 1

2

)2

−
t∑

h=k+1

(
|Jh|+ 1

2

)2

− 2m− aj
2

=

s∑
r=j+1

br(br − 1)−
t∑

h=k+1

dh(dh + 1),

since 2m− aj = 2
(∑s

r=j+1 br +
∑t

h=k+1 dh

)
. Therefore, by our induction hypothesis (5.4),∑

τ∈DIJ (C2m,+):

σ−1(2m)=aj

(−1)`(τ)xL(τ) = (−1)Ax−B
∑

τ̄∈D
ϕj(I)

ϕj(J)
(C2m−1)

(−1)`(τ̄)xL(τ̄)

= (−1)dxα̂(ϕj(J))−B
[

m− 1

b1, . . . , bj−1, bj − 1, bj+1, . . . , bs,d

]
x2

.(5.7)

But α̂(ϕj(J)) =
k∑
r=1

dr(dr + 1) +
s∑

r=j+1
br(br + 1), so α̂(ϕj(J))−B = α̂(J) + 2

s∑
r=j+1

br.

Thus, the sum in (5.7) becomes

(−1)dxα̂(J)x2
∑s
r=j+1 br

[
m− 1

b1, . . . , bj−1, bj − 1, bj+1, . . . , bs,d

]
x2

.

Therefore∑
σ∈DIJ (C2m,+)

(−1)`(σ)xL(σ) = (−1)dxα̂(J)
s∑
j=1

x2
∑s
r=j+1 br

[
m− 1

b1, . . . , bj−1, bj − 1, bj+1, . . . , bs,d

]
x2

= (−1)dxα̂(J) [b]x2

[m]x2

[
m

b, d

]
x2

as desired.

Under the same hypothesis, for the sum over odd chessboard elements we have, by Propo-

sition 4.5 and Remark 4.6∑
σDIJ (C2m,−)

(−1)`(σ)xL(σ) = (−1)`(w0)xL(w0)
∑

τ∈DJI (C2m,+)

(−1)`(τ)x−L(τ)

= (−1)(
2m
2 )xm

2
∑

τ∈DJI (C2m,+)

(−1)`(τ)x−L(τ)

= (−1)mxm
2
(−1)bx−

∑s
j=1 bj b̄j

[d]x−2

[m]x−2

[
m

b,d

]
x−2

= (−1)dxm+α̌(J) [d]x2

[m]x2

[
m

b,d

]
x2

and the result follows. This concludes the proof of the first equations in (5.5) and (5.6) and

hence of the result. �

By Lemma 4.1 the preceding result implies the following one, which computes the sign-

twisted generating function of the odd length over any unmixed descent class.
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Theorem 5.4. Let I, J ⊆ [n − 1] be unmixed. Then, keeping the same notation as in Theo-

rem 5.3

∑
σ∈DIJ (Sn)

(−1)`(σ)xL(σ) =



(−1)dxα(J)x
d[b]x2 + xb[d]x2

[b+ d]x2

[
b + d

b, d

]
x2

, if n = 2(b+ d),

(−x)dxα(J)

[
b + d

b, d

]
x2

n∏
k=2b+2d+2

(1 + (−1)k−1xb
k
2
c), otherwise.

6. Open problems

In this section we collect some conjectures and open problems arising from this work.

For σ ∈ Sn, we let cln(σ) = {τ ∈ Sn : Do(τ) = Do(σ)} denote the equivalence class of

permutations in Sn with the same odd diagram as σ. Clearly, the problem of characterizing

the odd diagrams is closely related to that of identifying these equivalence classes.

Recall that a permutation σ ∈ Sn is said to contain the pattern α = α1 · · ·αk if there exist

1 ≤ i1 < · · · < ik ≤ n such that σ(i1), . . . , σ(ik) are in the same relative order as α1, . . . , αk.

A permutation σ ∈ Sn is said to avoid the pattern α if it does not contain the pattern α. We

denote with Avn(α) = {σ ∈ Sn : σ avoids α} the set of permutations of degree n avoiding α.

We conjecture that odd diagrams faithfully encode permutations avoiding some patterns of

length 3. More precisely, we conjecture the following.

Conjecture 6.1. Let α ∈ {213, 312}. The map Do : Avn(α)→ [n]2, σ 7→ Do(σ) is injective.

More precisely, for a permutation σ ∈ Sn, the class cln(σ) contains at most one permutation

avoiding the pattern 213 and at most one avoiding 312. If they exist, they are respectively the

longest and the shortest element of cln(σ).

We have verified Conjecture 6.1 for n ≤ 7.

In light of Proposition 3.5 and Remark 3.7, it is natural to investigate the polynomials giving

the (non-twisted) distribution of the odd inversions. For n ∈ N we denote this polynomial by

Ln(x) :=
∑

σ∈Sn x
L(σ). Properties (iii) and (iv) in Proposition 2.2 imply that Ln(x) is monic

and symmetric for all n ∈ N. For small values of n we have:

L3(x) = 1 + 4x+ x2

L4(x) = 1 + 8x+ 6x2 + 8x3 + x4

L5(x) = 1 + 12x+ 23x2 + 48x3 + 23x4 + 12x5 + x6

L6(x) = 1 + 16x+ 59x2 + 137x3 + 147x4 + 147x5 + 137x6 + 59x7 + 16x8 + x9

With the exception of n = 4, for n ≤ 11 the polynomials Ln(x) are unimodal. We therefore

conjecture the following.

Conjecture 6.2. Let n ≥ 5. Then the polynomial Ln(x) is unimodal.

The first rows of the associated triangle are recorded in [10, A289511].

Generalizing further from Remark 3.7, we let, for k, n ∈ N, h ∈ Z/kZ and σ ∈ Sn,

(6.1) invk,h(σ) = |{(i, j) ∈ [n]2 : i < j, σ(i) > σ(j), j − i ≡ h (mod k)}|.
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Note that L(σ) = inv2,1(σ). Also, note that for k ≥ n−1, the polynomials of the distributions

of the statistic invk,1 over Sn coincide with the Eulerian polynomials:∑
σ∈Sn

xinvk,1(σ) =
∑
σ∈Sn

xdes(σ),

where des(σ) = |Des(σ)| denotes the descent number of the permutation σ. Inspired by this

fact and Conjecture 6.2, we put forward the following general conjecture.

Conjecture 6.3. The polynomials ∑
σ∈Sn

xinvk,1(σ)

are unimodal for all n ∈ N, and all k ≥ 3.

We have verified that Conjecture 6.3 holds for n ≤ 9, and all relevant k.

We have seen in Proposition 5.1 some sufficient conditions for the sign-twisted generating

function of the odd length to be zero on a descent class. This, together with the comments

following Proposition 5.1, suggests the following natural problem.

Problem 6.4. Let I, J ⊆ [n], I ∩ J = ∅. Give necessary and sufficient conditions on I and J

such that ∑
σ∈DIJ (Sn)

(−1)`(σ)xL(σ) = 0.

Acknowledgments. The authors would like to thank the referee for useful comments. The

first author would like to thank A. Postnikov, A. Rapagnetta, R. Stanley, M. Wachs, and

L. Williams for interesting and useful conversations. FB was partially supported by the

MIUR Excellence Department Project CUP E83C18000100006. The second named author was

partially supported by the German-Israeli Foundation for Scientific Research and Development

through grant no. 1246. AC would also like to thank the Erwin Schrödinger International

Institute for Mathematics and Physics (Vienna), where part of this research was carried out.

References

[1] A. Björner, F. Brenti, Combinatorics of Coxeter groups, Graduate Texts in Mathematics, 231, Springer-

Verlag, New York, 2005.

[2] F. Brenti, A. Carnevale, Proof of a conjecture of Klopsch-Voll on Weyl groups of type A, Trans. Amer.

Math. Soc. 369 (2017), 7531–7547.

[3] F. Brenti, A. Carnevale, Odd length for even hyperoctahedral groups and signed generating functions,

Discrete Math., 340 (2017), 2822–2833.

[4] F. Brenti, A. Carnevale, Odd length in Weyl groups, Algebraic Comb., 2 (2019), no. 6, 1125–1147.

[5] P. Griffiths, J. Harris, Principles of algebraic geometry, Pure and Applied Mathematics, Wiley-Interscience,

New York, 1978.

[6] R. Hartshorne, Algebraic geometry, Graduate Texts in Mathematics, 52, Springer-Verlag, New York-

Heidelberg, 1977.

[7] B. Klopsch, C. Voll, Igusa-type functions associated to finite formed spaces and their functional equations,

Trans. Amer. Math. Soc., 361 (2009), no. 8, 4405–4436.
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