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Abstract. The normalizer NW (WJ) of a standard parabolic subgroup WJ of
a finite Coxeter group W splits over the parabolic subgroup with complement
NJ consisting of certain minimal length coset representatives of WJ in W . In
this note we show that (with the exception of a small number of cases arising
from a situation in Coxeter groups of type Dn) the centralizer CW (w) of an
element w ∈ W is in a similar way a semidirect product of the centralizer of w
in a suitable small parabolic subgroup WJ with complement isomorphic to the
normalizer complement NJ . Then we use this result to give a new short proof of
Solomon’s Character Formula and discuss its connection to MacMahon master
theorem.

1. Introduction

Let W be a finite Coxeter group, generated by a set of simple reflections S with
length function ` : W → N∪{0}. Each subset J ⊆ S generates a so-called standard
parabolic subgroup WJ = 〈J〉 of W . Conjugates of standard parabolic subgroups
are called parabolic subgroups. These subgroups are themselves Coxeter groups
and therefore play an important role in the structure theory of finite Coxeter
groups. A well-known property of the cosets of a standard parabolic subgroup
WJ in W is that each coset contains a unique element of minimal length. The
subgroup WJ hence possesses a distinguished right transversal XJ , consisting of
the minimal length coset representatives. Due to a theorem of Howlett [4] and later
work of Brink and Howlett [1], it is known that and how the normalizer NW (WJ)
of the parabolic subgroup WJ is a semidirect product of WJ and a subgroup NJ

consisting of precisely those minimal length coset representatives x ∈ XJ which
leave J as subset of W invariant in the conjugation action of W on its subsets,
i.e., NJ = {x ∈ XJ : Jx = J}.

In this note we show that most centralizers of elements in W enjoy a similar
semidirect product decomposition. Pfeiffer and Röhrle [9] have shown, based on
Richardson’s [10] characterization of involutions as central longest elements of
parabolic subgroups of W , that if w ∈ W is an involution then its centralizer
in W coincides with the normalizer of a parabolic subgroup, and as such is a
semidirect product. This note can be regarded as a generalization of the result for
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involutions to all elements of W . Our results effectively reduce questions regarding
the conjugacy classes of elements in a finite Coxeter group W to the cuspidal
conjugacy classes, that is those conjugacy classes which are disjoint from any
proper parabolic subgroup of W . Cuspidal conjugacy classes of elements of W
play a central role in the algorithmic approach to the conjugacy classes of finite
Coxeter groups in Chapter 3 of the book by Geck and Pfeiffer [3]. We refer the
reader to this book as a general introduction to the theory of finite Coxeter groups.

We will call certain conjugacy classes of elements of a finite Coxeter group W
non-compliant ; see Definition 4.6. Without exception, these are conjugacy classes
of W which nontrivially intersect a parabolic subgroup of type Dn with n > 4.
Hence, if W has no parabolic subgroups of type D, part (ii) of the following
theorem applies without restrictions. We can now formulate our main theorem as
follows.

Theorem 1.1. Let W be a finite Coxeter group and let w ∈ W . Let V be the
smallest parabolic subgroup of W that contains w. Then the following hold.

(i) The centralizer CV (w) = CW (w)∩V is a normal subgroup of the centralizer
CW (w) with quotient CW (w)/CV (w) isomorphic to the normalizer quotient
NW (V )/V .

(ii) The centralizer CW (w) splits over CV (w) with complement isomorphic to
NW (V )/V unless w lies in a non-compliant conjugacy class of elements
of W .

The parabolic subgroup V in the theorem is well-defined as the intersection of
all parabolic subgroups of W that contain w, due to the fact that intersections
of parabolic subgroups are parabolic subgroups, see Theorem 2.3 below. For the
proof of the theorem, we will assume that w has minimal length in its conjugacy
class in W . Then V is the standard parabolic subgroup WJ of W , where J =
J(w), the set of generators occurring in a reduced expression for w. The proof of
part (i) is carried out in Section 3. Part (ii) of the theorem is established case by
case in Section 4. The results for the exceptional types of Coxeter groups have
been obtained with the help of computer programs using the GAP [11] package
CHEVIE [2]. These programs are available through the second author’s ZigZag [8]
package. In Section 5, we use Theorem 1.1 to provide a new short proof of a
theorem of Solomon, and then discuss its relation to MacMahon master theorem [5,
page 98].

2. Preliminaries.

In this section we recall some results about distinguished coset representatives
and conjugacy classes in a finite Coxeter group W , generated by a set of simple
reflections S and with length function `.
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For w ∈ W , we set J(w) = {s1, . . . , sl} ⊆ S, if w = s1 . . . sl is a reduced
expression, i.e., if l = `(w). As a consequence of Matsumoto’s theorem, J(w) does
not depend on the choice of a reduced expression for w.

For w ∈ W , let

D(w) = {s ∈ S : `(sw) < `(w)}

be its descent set, and let

A(w) = {s ∈ S : `(sw) > `(w)} = S \ D(w)

be its ascent set. The set

XJ = {w ∈ W : J ⊆ A(w)}

is a right transversal for WJ in W , consisting of the elements of minimal length
in each coset. For each element w ∈ W there are unique elements u ∈ WJ and
x ∈ XJ such that w = u ·x. Here the explicit multiplication dot indicates that the
product ux is reduced, i.e., that `(ux) = `(u) + `(x). An immediate consequence
is the following lemma.

Lemma 2.1 ([3, Lemma 2.1.14]). Let J ⊆ S. Then `(wx) ≥ `(w) for all w ∈ WJ ,
x ∈ XJ .

We denote the longest element of W by w0. For J ⊆ S, we denote by wJ the
longest element of the parabolic subgroup WJ .

Lemma 2.2. Let w ∈ W and let J = D(w). Then w = wJ · x for some x ∈ XJ .

Proof. This follows from [3, Lemma 1.5.2] and [3, Proposition 2.1.1] �

For J,K ⊆ S define XJK = XJ ∩ X−1K . Then XJK is a set of minimal length
double coset representatives of WJ and WK in W .

Theorem 2.3 ([3, Theorem 2.1.12]). Let J,K ⊆ S and let x ∈ XJK. Then
W x
J ∩WK = WL, where L = Jx ∩K.

Theorem 2.4 ([3, Theorem 2.3.3]). Suppose J,K are conjugate subsets of S and
that x ∈ XJ is such that Jx = K. If s ∈ D(x) then x = d · y, where d = wJwL for
L = J ∪ {s}, and y ∈ XL.

For the conjugacy classes of W , we are particularly interested in elements of
minimal length. These elements have useful properties, such as the following.

Proposition 2.5 ([3, Corollary 3.1.11]). Let C be a conjugcay class of W and
let w,w′ be elements of minimal length in C. Then J(w′) = J(w)x for some
x ∈ XJ(w),J(w′).

A conjugacy class C of elements of W is called a cuspidal class if C ∩WJ = ∅
for all proper subsets J of S. Cuspidal classes never fuse in the following sense.
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Theorem 2.6 ([3, Theorem 3.2.11]). Let J ⊆ S and let w ∈ WJ be such that the
conjugacy class CJ of w in WJ is cuspidal in WJ . Then

CJ = C ∩WJ ,

where C is the conjugacy class of w in W .

If w is of minimal length in its conjugacy class, then it is also of minimal length
in its conjugacy class in the Coxeter group WJ(w), which by [3, Proposition 3.2.12]
is a cuspidal class of WJ(w)

Below, we review some basic facts about Coxeter groups of classical type, that
is of type A, B or D. For a more detailed review of the combinatorics of the
conjugacy classes of finite Coxeter groups of classical type we refer the reader to
the description [7] of the implementation of the character tables of these groups
in GAP.

2.1. Type A. Suppose W is a Coxeter group of type An−1. Then W is isomor-
phic to the symmetric group Sn on the n points [n] = {1, . . . , n}, with Coxeter
generators si = (i, i+ 1), i = 1, . . . , n− 1. The cycle type of a permutation w ∈ W
is the partition of n, which contains a part l for each l-cycle of w, where fixed
points count as 1-cycles. Since any two elements of w are conjugate in W if and
only if they have the same cycle type, the conjugacy classes of elements of W are
naturally parametrized by the partitions of n.

Here, it will be convenient to write partitions as weakly increasing sequences.
Given a partition λ = (λ1, . . . , λt) of n (that is a sequence of positive integers
λ1 ≤ · · · ≤ λt with λ1 + · · ·+λt = n), there is a corresponding parabolic subgroup
WJ = Sλ1 × · · · × Sλt containing an element w with cycle type λ. A particular
element of minimal length in this conjugacy class is the product wλ of t disjoint
cycles consisting of λi successive points, for i = 1, . . . , t. For example, a minimal
length representative of the conjugacy class of elements with cycle structure 1124
in S8 is w1124 = (1)(2)(3, 4)(5, 6, 7, 8) = (3, 4)(5, 6, 7, 8).

Note that wλ is a Coxeter element of WJ , the product

wλ =
∏
si∈J

si(2.1)

(in decreasing order) of all si ∈ J . For example, J(w1124) = {s3, s5, s6, s7}, and
w1124 = s7s6s5s3.

2.2. Type B. Suppose W is a Coxeter group of type Bn. Then W is isomorphic to
the group of permutations on {−n, . . . ,−1, 0, 1, . . . , n} satisfying w(−i) = −w(i).
Alternatively, we can represent this group as the group of signed permutations, i.e.
injective maps from [n] to [n] ∪ −[n] with precisely one of i and −i in the image.
Since the elements are permutations, we can write them in cyclic form. We have
two types of cycles: cycles which do not contain i and −i for any i, and cycles
in which i is an element if and only if −i is an element. Cycles of the first type
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come in natural pairs, and instead of (i1, i2, . . . , ik)(−i1,−i2, . . . ,−ik), we write
(i1, i2, . . . , ik) and call it a positive cycle. Cycles of the second type are of the form
(i1, i2 . . . , ik,−i1,−i2, . . . ,−ik). We shorten that to (i1, i2, . . . , ik)

− and call it a
negative cycle. For example, the permutation

−4 7→ −2, −3 7→ 1, −2 7→ 4, −1 7→ 3, 0 7→ 0, 1 7→ −3, 2 7→ −4, 3 7→ −1, 4 7→ 2

is written as (1,−3)(2,−4)−. In this notation, every signed permutation looks like
an ordinary permutation in cyclic form, except that every element and every cycle
can have a minus sign. Note that we can change the sign of all elements in a cycle
without changing the signed permutation. The Coxeter generators are t1 = (1)−

and si = (i, i+ 1), i = 1, . . . , n− 1. We also set ti = (i)−, for i > 1.
An element w ∈ W (Bn) can also be represented in the form of a signed permuta-

tion matrix. This is an n×n matrix which acts on the standard basis {e1, . . . , en}
of Rn in the same way as the permutation w acts on the points [n] = {1, . . . , n},
i.e., for i ∈ [n], it maps ei to e|w(i)| or its negative, depending on whether w(i) is
positive or negative. We will briefly use this matrix representation of W (Bn) in
Section 4.6.

Since conjugation on a signed permutation in cyclic form works in the same way
as with usual permutations (if we conjugate with w, an element i of any cycle
is replaced by w(i)), two signed permutations are conjugate if and only if they
have the same number of negative cycles of every length, and the same number
of positive cycles of every length. The cycle type of a permutation w ∈ W is a
double partition λ = (λ+, λ−) with |λ+| + |λ−| = n, so that λ+ contains a part l
for each positive l-cycle of w, and λ− contains a part l for each negative l-cycle
of w. Two elements of W are conjugate in W if and only if they have the same
cycle type, and therefore the conjugacy classes of elements of W are naturally
parametrized by the double partitions of n. For example, the conjugacy class of
(1, 5,−2)(4, 7)(3)−(6,−8)− is (21, 32).

Take J ⊆ {t1, s1, s2, . . . , sn−1} and w ∈ WJ . If si /∈ J , the elements i + 1, . . . , n
appear in positive cycles of w with all positive elements. Therefore, if we are
given a double partition (λ+, λ−) of n, λ+ = (λ+1 , . . . , λ

+
t ), λ− = (λ−1 , . . . , λ

−
s ), the

smallest parabolic subgroup WJ that contains an element of cycle type (λ+, λ−)
is of the form W (B|λ−|) × Sλ+1

× · · · × Sλ+t
. According to the description [3,

3.4.2] of conjugacy classes of W , there is a minimal length representative wλ of the
corresponding conjugacy class of the following form. The negative cycles contain
1, . . . , |λ−|, and the positive cycles contain |λ−|+ 1, . . . , n; furthermore, each cycle
contains only consecutive numbers in increasing order. For example, a minimal
length representative of the conjugacy class corresponding to λ = (112, 23) is
wλ = (1, 2)−(3, 4, 5)−(6)(7)(8, 9).

2.3. Type D. Suppose W is a Coxeter group of type Dn. Then W is isomorphic to
the group of permutations on {−n, . . . ,−1, 0, 1, . . . , n} satisfying w(−i) = −w(i)
and with an even number of i > 0 satisfying w(i) < 0. Alternatively, we can
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represent this group as the group of signed permutations with an even number of i
mapping to−[n]. These are precisely the signed permutations with an even number
of negative cycles. The Coxeter generators are u = (1,−2) and si = (i, i + 1),
i = 1, . . . , n − 1. The cycle type of a permutation w ∈ W is a double partition
(λ+, λ−) with |λ+|+ |λ−| = n, so that λ+ contains a part l for each positive l-cycle
of w, and λ− contains a part l for each negative l-cycle of w. If two elements of
W are conjugate, they have the same cycle type. Having the same cycle type,
however, is not a sufficient condition for conjugacy. For example, u and s1 have
the same cycle type but are not conjugate. It is easy to see that if they have
the same cycle type (λ+, λ−) and |λ−| > 0 or λ+ contains an odd part, they are
conjugate. If they have the same cycle type (λ+,∅), where λ+ contains only even
parts, they are conjugate if and only if the number of negative numbers in their
cycle decomposition has the same parity.

We call a partition even if it consists of even parts only. The conjugacy classes of
elements of W are naturally parametrized by double partitions of n, where λ− has
an even number of parts, with two classes when λ− = ∅ and λ+ is even. Given a
double partition (λ+, λ−) of n, λ+ = (λ+1 , . . . , λ

+
t ), λ− = (λ−1 , . . . , λ

−
s ), s even, the

corresponding parabolic subgroup WJ is of the form W (D|λ−|)×Sλ+1
× · · · ×Sλ+t

.

Furthermore, there is a minimal length representative wλ of the corresponding
conjugacy class of the following form. The negative cycles contain 1, . . . , |λ−|, the
positive cycles contain |λ−| + 1, . . . , n, and each cycle contains only consecutive
numbers in increasing order. If λ− = ∅ and λ+ has only even parts, then there is
an extra representative w′λ with the first positive cycle starting with −1 instead of
1. For example, for λ = (112, 23), we have wλ = (1, 2)−(3, 4, 5)−(6)(7)(8, 9), and
for (224,∅), we have wλ = (1, 2)(3, 4)(5, 6, 7, 8) and w′λ = (−1, 2)(3, 4)(5, 6, 7, 8).

3. Centralizers.

In this section we prove a general theorem about the structure of element cen-
tralizers in finite Coxeter groups. It is shown to be a consequence of Theorem 2.6,
which in the book [3] has been established by a careful case-by-case analysis. With-
out loss of generality, we may assume that w ∈ W is an element of minimal length
in its conjugacy class in W .

Theorem 3.1. Suppose w ∈ W has minimal length in its conjugacy class in W
and let J = J(w). Then CW (w)WJ = NW (WJ).

Clearly, part (i) of Theorem 1.1 follows from this result.

Proof. Denote by C the conjugacy class of w in W and by CJ its conjugacy class
in WJ , which is cuspidal in WJ . By Theorem 2.6, CJ = C ∩WJ , which implies
that for every x ∈ NW (WJ) there exists an element u ∈ WJ with wx = wu. So
xu−1 ∈ CW (w), i.e. x ∈ CW (w)WJ , and hence NW (WJ) ⊆ CW (w)WJ .

Now it only remains to show that CW (w) ⊆ NW (WJ). Let y ∈ CW (w) and
write it as y = uxv−1 for u, v ∈ WJ and a double coset representative x ∈ XJJ .
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From w ∈ CJ ∩ Cy
J it then follows that wv ∈ CJ ∩ Cx

J ⊆ WJ ∩W x
J = WJ∩Jx , by

Theorem 2.3, and since CJ is a cuspidal class in WJ , we must have J ∩ Jx = J ,
whence x ∈ NJ ⊆ NW (WJ) and thus y = uxv−1 ∈ NW (WJ). �

The following additional results are of independent interest and will be used in
the proof of Theorem 5.1 below.

Proposition 3.2. Suppose w ∈ W has minimal length in its conjugacy class in
W and let J = J(w). Then the following hold.

(i) The conjugacy class of w in W is a disjoint union of conjugates of the
conjugacy class of w in WJ .

(ii) If a ∈ CW (w) and x ∈ XJ are such that CWJ
(w)a ⊆ WJx, then x ∈ NJ .

(iii) If x ∈ XJ is such that `(wx) = `(w), then J(wx) = Jx.
(iv) If v ∈ W is such that `(wv) = `(w), then J(wx) = Jx, where v = u · x

with u ∈ WJ and x ∈ XJ .

Proof. (i) and (ii) follow from the proof of Theorem 3.1.
(iii) Let K = J(wx). By Proposition 2.5, there exists an element y ∈ XKJ

such that Ky = J . Hence wxy ∈ WJ and `(wxy) = `(wx) = `(w) and (since
C ∩WJ = CJ) wxy = wu for some u ∈ WJ . Moreover, XK = yXJ . Hence u−1xy
centralizes wu, and if we write u−1xy = a · z for a ∈ WJ and z ∈ XJ then, by (ii),
z ∈ NJ . It follows that zy−1 ∈ XJK is the unique minimal length representative
of the coset WJx, hence x = zy−1 and Jx = J(wx).

(iv) We have wv = (wu)x. Conjugation with x does not decrease the length
(Lemma 2.1), so `(w) = `(wv) ≥ `(wu) and therefore `(wu) = `(w). By (iii), with
w replaced by wu, we have J(wv) = J(wu)x, and J(wu) = J(w), which finishes the
proof. �

4. Complements.

In this section we prove part (ii) of Theorem 1.1 for each type of irreducible
finite Coxeter group, case by case. We start with the general observation that part
(ii) of the theorem is straightforward in the following situations.

Lemma 4.1. Let w ∈ W be an element of minimal length in its conjugacy class
in W , and let J = J(w). If w is cuspidal in W or if CWJ

(w) = WJ then NJ is a
complement of CWJ

(w) in CW (w).

Proof. If w is cuspidal then WJ = W and both quotients NW (WJ)/WJ and
CW (w)/CWJ

(w) are trivial.
If CWJ

(w) = WJ then w = wJ and CW (w) = NW (WJ) [9, Proposition 2.2]. �

Our general strategy in search of a centralizer complement for w will be to
identify a complementM ofWJ in its normalizer that centralizes w. More precisely,
we have the following consequence of Theorem 3.1.
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Proposition 4.2. Let w ∈ W be of minimal length in its conjugacy class, let
J = J(w) and suppose that the normalizer complement NJ is generated by elements
x1, . . . , xr. Let u1, . . . , ur ∈ WJ be such that uixi ∈ CW (w), i = 1, . . . , r, and set
M = 〈u1x1, . . . , urxr〉. Then M is a complement of CWJ

(w) in CW (w) provided
that M ∩WJ = 1.

Proof. Clearly, WJM = WJNJ = NW (WJ). From M ∩WJ = 1 it then follows that
M is a complement of WJ in its normalizer. Moreover, M is a subgroup of CW (w)
since each of its generators centralizes w. From Theorem 3.1 it then follows that
M is a complement of CWJ

(w) in CW (w). �

4.1. Type A. Let λ = (1a1 , 2a2 , . . . , nan) be a partition of n, let wλ be as in (2.1)
and let J = J(wλ). Then WJ is a direct product

WJ = Sa1
1 ×Sa2

2 × · · · ×San
n

of symmetric groups, and its normalizer

NW (WJ) = S1 oSa1 ×S2 oSa2 × · · · ×Sn oSan

is a direct product of wreath products of symmetric with symmetric groups. In a
similar way, the centralizer

CW (wλ) = C1 oSa1 × C2 oSa2 × · · · × Cn oSan

is a direct product of wreath products of cyclic with symmetric groups, and the
centralizer

CWJ
(wλ) = Ca1

1 × Ca2
2 × · · · × Can

n .

is a direct product of cyclic groups. Clearly, the quotients NW (WJ)/WJ and
CW (wλ)/CWJ

(wλ) are both isomorphic to Sa1 ×Sa2 ×· · ·×San . In order to show
that the particular normalizer complement NJ is also a complement of CWJ

(wλ)
in CW (wλ), we introduce some notation. Let us define as

s(o,m) = (so+1so+2 · · · so+2m−1)
m = (o+ 1, o+ 2, . . . , o+ 2m)m(4.1)

the permutation that swaps, after an offset o, two adjacent blocks of m points {o+
1, . . . , o+m} and {o+m+ 1, . . . , o+ 2m}. For example, s(2, 3) = (s3s4s5s6s7)

3 =
(3, 4, 5, 6, 7, 8)3 = (3, 6)(4, 7)(5, 8). And si = s(i− 1, 1). Then

NJ = Sa1 ×Sa2 × · · · ×San

is a direct product of symmetric groups Sam , with Coxeter generators s(om,m),
s(om+m,m), . . . , s(om+(am−2)m,m), and offsets

om = a1 + 2a2 + · · ·+ (m− 1)am−1,(4.2)

for those m ∈ {1, . . . , n} with am > 0.

Proposition 4.3. Let λ be a partition of n, let wλ be the permutation with cycle
structure λ from (2.1) and let J = J(wλ) be the corresponding subset of S. Then
NJ is a complement of CWJ

(wλ) in CW (wλ).
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Proof. It suffices to consider the case λ = (ma) since all of WJ , NW (WJ), CW (wλ),
CWJ

(wλ), and NJ are subgroups of the direct product

S1a1 ×S2a2 × · · · ×Snan

inside Sn and one can argue componentwise.
If λ = (ma), then NJ is isomorphic to Sa, with a−1 Coxeter generators s(o,m),

s(m,m), . . . , s((a−2)m,m), permuting the blocks of m points

{1, . . . ,m}, {m+1, . . . , 2m}, . . . , {(a−1)m+1, . . . , am}.
Clearly

wλ = (1, . . . ,m)(m+1, . . . , 2m) · · · ((a−1)m+1, . . . , am)

is centralized by NJ . The claim now follows from Theorem 3.1. �

4.2. Type B. Let λ be a double partition of n with λ+ = (1a1 , 2a2 , . . . , nan) and
λ− = (1b1 , 2b2 , . . . , nbn), let wλ be as in Section 2.2, and let J = J(wλ) be the
corresponding subset of S. Then WJ is a direct product

WJ = W (B|λ−|)×Sa1
1 ×Sa2

2 × · · · ×San
n

and its normalizer

NW (WJ) = W (B|λ−|)×S1 oW (Ba1)×S2 oW (Ba2)× · · · ×Sn oW (Ban)

is a direct product of W (B|λ−|) with wreath products of symmetric groups and
Coxeter groups of type B. In a similar way, the centralizer

CW (wλ) = CW (B|λ−|)(wλ)× C1 oW (Ba1)× C2 oW (Ba2)× · · · × Cn oW (Ban)

is a direct product of CW (B|λ−|)(wλ) and wreath products, and the centralizer

CWJ
(wλ) = CW (B|λ−|)(wλ)× C

a1
1 × Ca2

2 × · · · × Can
n

is a direct product of CW (B|λ−|)(wλ) and cyclic groups. Clearly, the quotients

NW (WJ)/WJ and CW (wλ)/CWJ
(wλ) are both isomorphic to W (Ba1)×W (Ba2)×

· · · ×W (Ban). In order to show that a variant of the particular normalizer com-
plement NJ is a complement of CWJ

(wλ) in CW (wλ), we introduce some more
notation.

Denote by r(o,m) the permutation defined by

x.r(o,m) =

{
2o+m+ 1− x, if o+ 1 ≤ x ≤ o+m,

x, otherwise.

In this way, r(o,m) = (o + 1, o + m)(o+2, o+m−1) · · · reverses the range {o +
1, . . . , o+m} and thus is the longest element of the symmetric group S{o+1,...,o+m}
with Coxeter generators so+1, . . . , so+m−1. For example, r(2, 5) = (3, 7)(4, 6).

Moreover, denote

t(o,m) = (o+1)−(o+2)− · · · (o+m)−,
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which acts as −1 on the points {o+1, o+2, . . . , o+m} and as identity everywhere
else.

If λ+ = (ma) and λ− = ∅, then WJ is a direct product of a copies of Sm and
NJ is isomorphic to W (Ba), with Coxeter generators

r(0,m) t(0,m) and s(0,m), s(m,m), . . . , s((a−2)m,m).

In general, if λ+ = (1a1 , 2a2 , . . . , nan), then WJ is a direct product of W (B|λ−|) and
direct products of isomorphic symmetric groups Sm and NJ is a direct product of
groups W (Bam), with Coxeter generators

r(om,m) t(om,m) and s(om,m), s(om +m,m), . . . , s(om + (am−2)m,m)

and offsets

om =
∣∣λ−∣∣+ a1 + 2a2 + · · ·+ (m− 1)am−1,(4.3)

for those m ∈ {1, . . . , n} with am > 0. Unfortunately, this group NJ usually
does not centralize wλ. However, if we define a group Nλ as the subgroup of W
generated by the same elements as NJ , with t(om,m) in place of r(om,m) t(om,m),
then Nλ is a centralizing complement.

Proposition 4.4. Let λ be a double partition of n, let wλ be as in Section 2.2,
and let J = J(wλ) be the corresponding subset of S. Then

Nλ = 〈t(om,m), s(om+km,m) | k = 0, . . . , am−2, m = 1, . . . , n, am > 0〉
is a complement of CWJ

(wλ) in CW (wλ).

Proof. Clearly, Nλ centralizes wλ since its generators t(om,m) and s(om+km,m)
do. The statement now follows with Proposition 4.2 from the fact that Nλ is a
complement of WJ in its normalizer in W . �

4.3. Type D. The case of Coxeter groups of type Dn is best dealt with by com-
paring it to the situation in type Bn. Throughout this section, we assume n ≥ 4,
denote by W the Coxeter group of type Bn with Coxeter generators S, as described
in Section 2.2, and by W+ the Coxeter group of type Dn with Coxeter generators
S+, consisting of the signed permutations with an even number of negative cycles
as described in Section 2.3.

The following properties are easy to establish and we leave their proofs to the
reader.

Lemma 4.5. Let w ∈ W be an element of cycle type λ = (λ+, λ−) such that λ−

has an even number of parts and that w has minimal length in its conjugacy class
in W . Also let J = J(w). Then the following hold.

(i) w has minimal length in its class in W+.
(ii) If λ− = ∅ and λ+ is even then CW+(w) = CW (w), otherwise CW+(w) has

index 2 in CW (w).
(iii) If J+ = S+ ∩ WJ then W+

J+ is the smallest parabolic subgroup of W+

containing w.
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(iv) If λ− = ∅ then J+ = J , otherwise W+
J+ = WJ ∩W+ is a subgroup of index

2 in WJ

(v) CW+

J+
(w) = CWJ

(w) ∩ W+ is a subgroup of index 2 in CWJ
(w) unless

λ− = ∅.
(vi) If λ+ is not even and λ− = ∅ then N+

J+ = NJ ∩W+ is a subgroup of index
2 in NJ , otherwise NJ

∼= N+
J+.

The parabolic subgroup W+
J+ is of the form D|λ−|×Sλ+1

× · · · ×Sλ+t
, where Dm

is the subgroup of W+ generated by {u, s1, . . . , sm−1}, for m = 2, . . . , n.

Definition 4.6. We call a double partition λ = (λ+, λ−) a non-compliant double
partition if λ+ consists of a single odd part m and λ− is a nonempty even partition
of even length.

We call a conjugacy class C of W a non-compliant class, if, for some odd n > 4,
there is a non-compliant double partition λ of n and a parabolic subgroup WM of
W which has an irreducible component WK of type Dn, such that C contains an
element of WM whose projection on WK has cycle type λ.

For example, the elements of W = W (D5) with cycle type (1, 22) form a non-
compliant class. For another example, the elements of W = W (D7) of cycle type
(21, 22) form a non-compliant class, as some of them lie in a parabolic subgroup
WM of type D5 × A1, with D5-part of cycle type (1, 22).

Lemma 4.7. An element w ∈ W (Dn) of cycle type λ = (λ+, λ−) lies in a non-
compliant class if and only if λ+ is not even and λ− is nonempty and even.

The next result shows that, in a Coxeter group W+ of type Dn, the centralizer
CW+(w) splits over CW+

J
(w), unless the class of w ∈ W+ is non-compliant. Here,

we write J+(w) ⊆ S+ for the set of generators occurring in a reduced expression
of w when considered as an element of W+, in order to distinguish it from the set
J(w) ⊆ S of generators in a reduced expression of w ∈ W .

Proposition 4.8. Let λ = (λ+, λ−) be a double partition of n be such that `(λ−)
is even. Let wλ and Nλ be as in Proposition 4.4 and let J+ = J+(wλ) be the
corresponding subset of S+. Then the following hold.

(i) If λ+ is even then Nλ is a complement of CW+

J+
(wλ) in CW+(wλ).

(ii) If λ+ is not even and λ− = ∅ then Nλ ∩W+ is a subgroup of index 2 in
Nλ and a complement of CW+

J+
(wλ) in CW+(wλ).

(iii) If λ+ = (1a1 , . . . , nan) and λ− = (λ−1 , . . . , λ
−
s ) is not even then there is an

index j ≤ s such that k = λ−1 + · · ·+ λ−j is odd, and the subgroup

N+
λ = 〈t(0, k)m t(om,m), s(om+im,m) | i = 0, . . . , am−2, m = 1, . . . , n, am > 0〉

is a complement of CW+

J+
(wλ) in CW+(wλ).

Note that t(0, k)m = 1 if m is even and t(0, k)m = t(0, k) if m is odd.
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Proof. Let J = J(wλ) be the subset of S corresponding to λ. In all three cases
it suffices to find a complement N∗ of WJ in its normalizer in W that centralizes
wλ such that |N∗ ∩W+| =

∣∣N+
J+

∣∣. For then N∗ ∩ W+
J+ = 1 and NW+(W+

J+) ⊆
NW (WJ) = WJN

∗ imply that N∗ ∩W+ is a complement of W+
J+ in its normalizer

in W+ that centralizes wλ, and the claim follows with Proposition 4.2.
(i) If λ+ is even then Nλ is contained in W+ and N∗ = Nλ will do.
(ii) If λ− = ∅ and λ+ is not even then J+ = J but NJ+ is subgroup of index 2

in NJ and N∗ = Nλ ∩W+ will do.
(iii) If λ− is not even then N+

λ is a complement of WJ in its normalizer in W
that is contained in W+ and centralizes wλ, whence N∗ = N+

λ will do. �

4.4. Type I. Suppose W is a Coxeter group of type I2(m). Then W is the group
generated by generators s1 and s2 satisfying (s1s2)

m = (s2s1)
m. Each element of

W is either cuspidal or an involution. Hence the theorem for this type follows from
Lemma 4.1.

4.5. Exceptional Types. Although in type A each conjugacy class contains an
element w such that the normalizer complement NJ is also a centralizer com-
plement, this cannot be expected in general to be the case. However, from the
preceding examples one sees that it is frequently possible to construct from NJ

an isomorphic copy N∗J which is a centralizer complement. In each of the above
examples, N∗J is obtained from NJ by replacing generators xi of NJ by products
wLxi for suitable subsets L ⊆ J .

Based on this observation, we formulate an algorithm, which in practice always
finds a centralizer complement, except for elements of non-compliant classes.

Algorithm CentralizerComplement.

Input: A finite Coxeter group W and an element w of minimal length in its
conjugacy class in W .

Output: a centralizer complement for w, or fail if none exists.

1. set J ← J(w).
2. find involutions x1, . . . , xr generating the normalizer complement NJ .
3. for each element v of minimal length in the WJ -conjugacy class of w do

the following:
• let u ∈ WJ be such that vu = w;
• for each i = 1, . . . , r, set

Yi ←

{
{xi}, if vxi = v,

{wLxi : L ⊆ J, xwLi = xi, v
wL = vxi}, otherwise.

• if there are elements yi ∈ Yi, i = 1, . . . , r, such that M = 〈y1, . . . , yr〉
satisfies M ∩WJ = 1 then return Mu.

4. return fail (if we ever get here).
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Note that, by Proposition 4.2, any group M found in this way is necessarily a
complement of the centralizer of w in WJ .

For W irreducible of exceptional type, the algorithm produces a centralizer
complement in all but seven cases. Each case corresponds to a non-compliant
class from the following table. In this table we list, for each non-compliant class
C of W , its position i in CHEVIE’s list of conjugacy classes of W , its name, a
reduced expression for a representative w of minimal length, the set J(w), a set
M ⊇ J(w), the type of WM exhibiting a direct factor of type D2l+1, and the label
λ of the conjugacy class of W (D2l+1) containing the projection of w.

W i name w ∈ C J(w) M type λ

E6 7 D4(a1) 342345 2345 12345 D5 (1, 22)

E7 9 D4(a1) 425423 2345 12345 D5 (1, 22)
42 D4(a1) + A1 4254237 23457 123457 D5 × A1 (1, 22)

E8 16 D4(a1) 242345 2345 12345 D5 (1, 22)
44 D6(a1) 24234567 234567 2345678 D7 (1, 42)
53 D4(a1) + A2 34234578 234578 1234578 D5 × A2 (1, 22)
73 D4(a1) + A1 3542348 23458 123458 D5 × A1 (1, 22)

In the next section we show that in all of these cases, and indeed whenever w
lies in a non-compliant class, no complement exists.

4.6. Non-compliance. The class of W (D5) with label λ = (1, 22) contains the
element

wλ = ts1s2s1ts1s2s3 = (ts1t)s2(ts1t)s1s2s3 = us2us1s2s3,

which lies in the parabolic subgroup WJ of type D4. Its centralizer CWJ
(w) in

W (D4) has order 16 and its centralizer CW (w) in W (D5) has order 32. However,
CWJ

(w) has no complement in CW (w), since the coset CW (w) \ CWJ
(w) contains

no element of order 2 (as a straightforward computation in GAP will confirm).
The next result shows that this is indeed always the case, when the cycle type

of w ∈ W (Dn) is a non-compliant double partition of n.

Proposition 4.9. Suppose that W is of type Dn and let w ∈ W be an element
of minimal length in its conjugacy class with J(w) = J . If the cycle type of
w ∈ W is a non-compliant double partition of n then the centralizer CWJ

(w) has
no complement in CW (w).

Proof. Recall from Section 2.2 that elements ofW (Bn) can be represented as signed
permutation matrices, i.e., matrices with exactly one non-zero entry 1 or −1 in
each row and column. Such an element lies in W (Dn) if and only if its matrix has
an even number of entries −1, and it is an involution if and only if the matrix is
symmetric.

Now suppose that n = m + k is odd and that w ∈ W = W (Dn) is an element
of minimal length in a conjugacy class with cycle type λ = (λ+, λ−) where the
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partition λ+ consists of a single odd part m and λ− is a nontrivial partition of
an even number k, consisting of an even number of even parts. Then WJ for
J = J(w) has type Dk × Am−1 and, by the description of NJ in Section 4.2 and
Lemma 4.5(vi), its normalizer NW (WJ) has a complement of order 2 (and of type
B1), generated by the quotient wJw0.

We may assume that J = S \ {sk+1}, so that, as signed permutation on the
set {1, . . . , n}, the element w induces an even number of negative cycles on the
k points {1, . . . , k} and a positive m-cycle on the m points {k + 1, . . . , n}. The
centralizer CW (w) cannot move points from outside the m-cycle into the m-cycle
and thus consists of block diagonal matrices

diag(A,B) =

[
A 0
0 B

]
,

of a k × k matrix A and an m × m-matrix B, which modulo 2 have the same
number of entries −1 since CW (w) is a subgroup of W (Dn). Moreover, for each
element diag(A,B) in CW (w) the number of entries −1 on the diagonal of A, is
even, since with every point in {1, . . . , k} being mapped to its negative, the entire
cycle which contains it must be negated.

The centralizer of w in WJ consists precisely of those elements diag(A,B) ∈
CW (w) which have an even number of entries −1 in both A and B, since A is the
matrix of an element in W (Dk).

Let u be an involution in CW (w). Then its matrix diag(A,B) is symmetric, and
an even number of entries −1 on the diagonal of A implies that both A and B
have an even number of entries −1 and thus u ∈ CWJ

(w).
It follows that CWJ

(w) has no complement in CW (w). �

More generally, if w lies in a non-compliant class of a finite Coxeter group W ,
then its centralizer has no complement.

Theorem 4.10. Let W be a finite Coxeter group. Suppose w is an element of
minimal length in a non-compliant conjugacy class of W with J(w) = J . Then
the centralizer CWJ

(w) has no complement in CW (w).

Proof. Suppose first that W is a direct product W1 ×W2 of nontrivial standard
parabolic subgroups W1 and W2, that w = w1w2 with w1 ∈ W1 and w2 ∈ W2, and
that w1 lies in a non-compliant class of W1. Then WJ = WJ1 ×WJ2 for certain
subsets J1 ⊆ W1∩S and J2 ⊆ W2∩S. If CWJ1

(w1) has no complement in CW1(w1)
then CWJ

(w) cannot have a complement in CW (w) = CW1(w1)× C(w2).
Next, suppose that w ∈ WL for some L ⊆ S and that w lies in a non-compliant

class of WL. Suppose N is a complement of CWJ
(w) in CW (w), that is CW (w) =

CWJ
(w) oN . Then the centralizer of w in WL,

CWL
(w) = CW (w) ∩WL = (CWJ

(w) oN) ∩WL = CWJ
(w) o (N ∩WL),

in contradiction to our assumption that w lies in a non-compliant class.
The theorem now follows from Definition 4.6 and Proposition 4.9. �
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5. Applications.

In this section we first use Theorem 1.1 to prove a result about minimal length
representatives of conjugacy classes. Then we show how it implies the celebrated
Solomon’s character formula. Finally, we discuss the interpretation of Solomon’s
theorem as a Coxeter group analogue of MacMahon master theorem.

Theorem 5.1. Assume w has minimal length in its conjugacy class in W . Then
the following hold for any v ∈ W :

(i) J(wv) = D(v−1) ⇐⇒ v = wJ(w);
(ii) J(wv) = A(v−1) ⇐⇒ v = wJ(w)w0.

Proof. Let L = D(v−1). Then v−1 = wL · x for some x ∈ XL, by Lemma 2.2.
Clearly `((wv)wL) = `(wv), since J(wv) = L. By Lemma 2.1, conjugation by the
coset representative x does not decrease the length, hence `(wv) = `((wv)wL) ≤
`((wv)wLx) = `(w) and it follows that wv has minimal length in its conjugacy
class as well. By Proposition 2.5, L = J(wv) and J(w) are conjugate subsets
of S. Proposition 3.2 (iv) says more precisely that x is a conjugating element, i.e.,
Lx = J(w).

Assume that `(x) > 0 and let s ∈ D(x). Then s /∈ L, since x ∈ XL; denote
L ∪ {s} by M . By Theorem 2.4, x is a reduced product x = d · y with y ∈ XM

and d = wLwM , the longest coset representative of WL in WM . It follows that
v−1 = wL · x = wM · y, whence M ⊆ D(v−1) = L ( M . The contradiction shows
that x = 1, and therefore v = wL and L = J(w).

(ii) Note that J(ww0) = J(w)w0 , D(xw0) = D(x)w0 , and A(x) = D(xw0) for all
x ∈ W , whence D(x)w0 = A(w0x). Therefore, it follows from (i) that

J(wxw0) = J(wx)w0 = D(x−1)w0 = A((xw0)
−1) ⇐⇒ x = wJ(w),

as desired, for v = xw0. �

The following formula, first proved by Solomon [12] in 1966, is an easy conse-
quence of the previous result.

Theorem 5.2 (Solomon’s theorem). For J ⊆ S, let πJ denote the permutation
character of the action of W on the cosets of WJ defined by πJ(w) =

∣∣FixW/WJ
(w)
∣∣,

and let ε be the sign character of W , defined by ε(w) = (−1)`(w) for w ∈ W . Then∑
J⊆S

(−1)|J |πJ = ε.

Proof. The formula follows if we can show that
∑

J⊆S(−1)|J |πJ(w) = ε(w) for all

w ∈ W . We have WJxw = WJx ⇐⇒ xwx−1 ∈ WJ , so∑
J⊆S

(−1)|J |πJ(w) =
∑
J⊆S

(−1)|J |
∑
x∈XJ

xwx−1∈WJ

1 =
∑
x∈W

∑
J(xwx−1)⊆J⊆A(x)

(−1)|J |,
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where we reversed the order of summation and used the facts that x ∈ XJ ⇐⇒
J ⊆ A(x) and xwx−1 ∈ WJ ⇐⇒ J(xwx−1) ⊆ J . The Binomial Theorem implies
that ∑

A⊆J⊆B

(−1)|J | = (−1)|A|
∑
I⊆B\A

(−1)|I| =

{
(−1)|A| if A = B,

0 otherwise.

But then ∑
J⊆S

(−1)|J |πJ(w) =
∑
x∈W

J(xwx−1)=A(x)

(−1)|A(x)|.

Since
∑

J⊆S(−1)|J |πJ is a class function, it is enough to choose w with minimal
length in its conjugacy class. By Theorem 5.1(ii), this sum then consists only of
the one term for x−1 = wJ(w)w0, and we have∑

J⊆S

(−1)|J |πJ(w) = (−1)|A(w0wJ(w))|.

But
∣∣A(w0wJ(w))

∣∣ =
∣∣D(wJ(w))

w0
∣∣ =

∣∣D(wJ(w))
∣∣ = |J(w)| and then the claim

follows from the fact that (−1)|J(w)| = (−1)`(w) [3, Exercise 3.17]. �

Solomon proves this formula generically for all types of finite Coxeter groups,
and he has published three different versions of the proof. His original proof [12]
depends on an application the Hopf trace formula to the Coxeter complex of the
finite Coxeter group W , a later proof (of a more general statement) uses a decom-
position of the group algebra of W . The third version of the proof [14] is based on
properties of a homomorphism of the descent algebra of W into the character ring
of W (see also [3, Exercise 3.15]). None of these proofs have the combinatorial
flavor of the above proof.

Finally, let us explain how to interpret Solomon’s theorem as a generalization
of a special case of the celebrated MacMahon master theorem. For a connection
with a different result due to MacMahon, see [13, §6].

MacMahon’s master theorem states that for a matrix X = (xij)n×n, the func-
tions

(5.1)
1

det(Id−X)
,

where Id denotes the n× n-identity matrix, and∑
w

xv1w1xv2w2 · · · xvmwm ,

where w = w1w2 · · ·wm runs over all words in {1, 2, . . . , n} and v = v1v2 · · · vm
is the weakly increasing rearrangement of w, are equal. In particular, for any
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permutation w ∈ Sn, the coefficient of x1w(1) · · ·xnw(n) in (5.1) is equal to 1. For
I ⊆ [n], denote by XI the submatrix (xij)i,j∈I . We have

1

det(Id−X)
=

1∑
I⊆[n](−1)|I| detXI

=
1

1−
∑

∅6=I⊆[n](−1)|I|−1 detXI

=
∑
k≥0

( ∑
∅6=I⊆[n]

(−1)|I|−1 detXI

)k
=
∑
k≥0

∑
(−1)|I1|−1+...+|Ik|−1 detXI1 · · · detXIk ,

where the last sum runs over all k-tuples (I1, . . . , Ik) of non-empty subsets of [n].
Since we are interested in the coefficient of x1w(1) · · ·xnw(n) (in which all indices
are represented, and each index is represented only twice, once as a first index and
once as a second index), we can limit the sum to ordered set partitions (I1, . . . , Ik)
of the set [n]. Note that we have (−1)|I1|−1+...+|Ik|−1 = (−1)n−k.

Recall that the symmetric group Sn is a Coxeter group W of type An−1 with
Coxeter generators S = {s1, . . . , sn−1}, si = (i, i + 1). Choose a composition
λ ` n. By Merris-Watkins formula [6] (and not hard to prove independently), the
coefficient of x1w(1) · · ·xnw(n) in∑

detXI1 · · · detXIk ,

where the sum runs over all ordered set partitions (I1, . . . , Ik) of [n] with |Ij| = λj
for all j, is equal to (−1)`(w)πJ(w), where J is the subset of S that corresponds to
the composition λ. This means that∑

(−1)n−|λ|(−1)`(w)πJ(w) = 1,

where the sum runs over all subsets J of S. This is obviously equivalent to
Solomon’s theorem.
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