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We determine the abstract commensurator Com(F) of Thompson’s group F and
describe it in terms of piecewise linear homeomorphisms of the real line. We
show Com(F) is not finitely generated and determine which subgroups of finite
index in F are isomorphic to F . We also show that the natural map from the
commensurator group to the quasi-isometry group of F is injective.

20E34; 26A30

Introduction

Thompson’s groups have been extensively studied since their introduction by Thomp-
son in the 1960s, despite the fact that Thompson’s account [7] appeared only in 1980.
They have provided examples of infinite finitely presented simple groups, as well
as some other interesting counterexamples in group theory (see for example, Brown
and Geoghegan [3]). Cannon, Floyd and Parry [4] give an excellent introduction to
Thompson’s groups where many of the basic results used below are proven carefully.

Automorphisms for Thompson’s group F were studied by Brin [2], where a key theorem
by McCleary and Rubin [6] is used to realize each automorphisms as conjugation by a
piecewise linear map. Here, we generalize from automorphisms to commensurations,
which are isomorphisms between two subgroups of finite index. These form a group
(under a natural equivalence relation involving passing to smaller yet still finite-index
subgroups), called the commensurator group.

We classify finite-index subgroups of F , and then we extend Brin’s results from auto-
morphisms to commensurations, again realizing every commensuration as conjugation
by a piecewise linear homeomorphism of the real line. These maps exhibit a particular
structure, satisfying an affinity condition in the neighborhood of ∞ which we use to
find the algebraic structure of the commensurator of F .

http://www.ams.org/mathscinet/search/mscdoc.html?code=20E34,(26A30)
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Commensurators have proven to be an effective tool for investigating quasi-isometries
of a group to itself, and for effectively analyzing rigidity, particularly of lattices. In the
case of F , the only quasi-isometries of F known previously were automorphisms. This
paper provides a wide array of examples of quasi-isometries, since all commensurations
are quasi-isometries, and we prove in Section 5 that the commensurator group embeds
into the quasi-isometry group in the case of F .

Our approach is algebraic, but we note that elements of the commensurator of F can be
represented by marked, infinite, eventually periodic, binary tree pair diagrams. We also
note that recently Bleak and Wassink [1] have independently described the finite-index
subgroups of F , using different methods.

The paper is organized as follows. In Section 1 we give the necessary definitions,
and in Section 2 the first basic results for the finite-index subgroups of F . In Section
3 the main result about the commensurator is stated and proved, and in Section 4 its
algebraic structure is given. The proof of the embedding of the commensurator group
into the quasi-isometry group is given in Section 5.
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1 Definitions

Let P denote the group of all homeomorphisms f from IR to itself that

(1) are piecewise linear with a discrete (but possibly infinite) set of breakpoints
(discontinuities of the derivative of f ),

(2) use only slopes that are integral powers of 2,

(3) have their breakpoints in the set ZZ[ 1
2 ]and

(4) satisfy f (ZZ[ 1
2 ]) ⊂ ZZ[ 1

2 ].
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It is easy to check that each element f of P actually satisfies f (ZZ[ 1
2 ]) = ZZ[ 1

2 ] and
that P has a subgroup of index two which contains only the order preserving elements.
We denote this subgroup by P+ . The quotient P/P+ is generated by the image of the
homeomorphism τ : t 7→ −t .

Let f ∈ P. We call f integrally affine if f (t) = εt+p for some integer p and ε ∈ {±1}.
We say f is periodically affine if f (t + p) = f (t) + q for some non-zero p, q ∈ IR and
integrally periodically affine if p and q are integers. Note that all integrally affine
maps are integrally periodically affine with q = ±p depending on whether f is in P+

or not.

When P is any of the above properties, then we call f eventually P if f satisfies P
for all t ∈ IR with |t| > M for some M > 0; here |t| denotes the absolute value of t .
For example, f ∈ P+ is eventually integrally affine if there exist l, r ∈ ZZ, M ∈ IR,
M > 0, so that f (t) = t + r for all t > M and f (t) = t + l for all t < −M . Notice that
l and r may well be different.

It is well-known that Thompson’s group F is isomorphic to the subgroup of P+

consisting of all eventually integrally affine elements (see [4]). It is easy to see that the
commutator subgroup F′ of F consists of all eventually trivial elements of P+ (those
where eventually f (t) = t). This group is denoted by BPL2(IR) by Brin [2], where B
stands for bounded support.

2 Finite-index Subgroups of F

Let f be an element of F . Since f is eventually integrally affine, there are two integers
l, r and a real number M > 0 such that f (t) = t + r for t > M and f (t) = t + l for
t < −M . The two numbers l and r are precisely the two components of the image
of f in ZZ × ZZ under the abelianization map. The subgroups of finite index of F are
in one-to-one correspondence with those of its abelianization ZZ× ZZ by the following
result.

Proposition 2.1 Let H be a subgroup of F of finite index. Then H contains F′ , the
commutator subgroup of F , and hence H is normal in F . Moreover, H′ = F′ .

Proof Since F is finitely generated, H has only finitely many conjugates in F and
the intersection of all of them, K say, is normal and of finite index in F . We consider
K ∩ F′ , which is thus normal and of finite index in F′ . Hence, since F′ is simple and
infinite, we conclude that K ∩ F′ = F′ and F′ ⊂ K ⊂ H .
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Hence H is normal in F . The final claim follows from the fact that H′ is contained in
F′ but also characteristic in H and hence normal in F , whence F′ ⊂ H′ .

From this fact we deduce that the finite-index subgroups of F are in bijection with those
of ZZ×ZZ. There is a distinguished family among these—the subgroups pZZ× qZZ. We
denote by [p, q], p, q ∈ ZZ, the preimage in F under the abelianization homomorphism
of the subgroup pZZ× qZZ of ZZ× ZZ. Thus F = [1, 1] and F′ = [0, 0].

3 The Commensurator Group

As mentioned before, a commensuration of a group G is an isomorphism α : A → B,
where A and B are subgroups of G of finite index. Two commensurations α and β

are equivalent if they agree on some subgroup of finite index in G. In view of this, the
product β ◦ α of two commensurations

α : A → B and β : C → D

is defined on α−1(B ∩ C). The set of all commensurations of G modulo the above
equivalence relation, together with this composition, forms a group called the com-
mensurator of G which we denote by Com(G). If G is a subgroup of the group H ,
then the (relative) commensurator of G in H , ComH(G), consists of all elements h of
H for which G ∩ Gh has finite index in both G and Gh ; here Gh = h−1Gh.

The main result of this paper is the following.

Theorem 3.1 The commensurator of F is isomorphic to ComP(F), which consists of
all eventually integrally periodically affine elements (of P).

The strategy of the proof is to find a large group where F is a subgroup, and in such
a way that every commensuration can be seen as a conjugation by an element of the
large group. The group P plays this role in the case of F .

In order to explain this strategy, we need some definitions and one of the main results
of McCleary and Rubin [6]. Let (L, <) be a dense linear order. By interval we mean a
nonempty open interval. A subgroup G of Aut(L) is locally moving if for every interval
I there exists a nontrivial element g ∈ G which acts as the identity on L \ I . Finally,
G is n-interval-transitive if for every pair of sequences of intervals I1 < · · · < In and
J1 < · · · < Jn there exists g ∈ G such that Ig

k ∩ Jk 6= ∅ for 1 ≤ k ≤ n. Below, L
denotes the Dedekind completion of L which is assumed to have no endpoints.
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Theorem 3.2 (McCleary–Rubin [6]) Assume (Li, <) is a dense linear order without
endpoints and let Gi ⊂ Aut(Li) be locally moving and 2-interval transitive, i = 1, 2.
Suppose that α : G1 → G2 is an isomorphism. Then there is a monotonic bijection
τ : L1 → L2 which induces α , that is, gα = τ−1gτ for every g ∈ G1 ; and τ is unique.

Being locally moving and having 2-interval transitivity are local properties in the sense
that a group inherits these from any of its subgroups.

Proof of Theorem 3.1 View ZZ[ 1
2 ] as a dense linear order and F as the eventually

integrally affine elements of P+ . Let α : A → B be a commensuration of F . By
Proposition 2.1, both A and B contain F′ which is (obviously) locally moving and
2-interval transitive (see [2, Lemma 2.1]). So Theorem 3.2 tells us that α is in-
duced by conjugation with a unique element of Homeo(IR). This yields an injective
homomorphism Ψ : Com(F) → Homeo(IR).

Next, we show that the image of Ψ is in fact contained in P. By Proposition 2.1, each
commensuration of F induces an automorphism of F′ . In other words, the image of Ψ
is contained in NHomeo(IR)(F′), the normalizer of F′ in Homeo(IR). But this normalizer
is equal to P by Theorem 1 of Brin [2]. The existence and uniqueness statements in
Theorem 3.2 now imply that Ψ is an isomorphism between Com(F) and ComP(F),
which proves the first part of Theorem 3.1.

Let α ∈ Com(F) and choose positive integers p and q so large that α is defined on the
subgroup [p, q], that is [p, q]α , the image of [p, q] under α , is contained in F . By what
was said above, we can view α as conjugation by an element of P. So for f ∈ [p, q]
we find f α = α−1f α to be eventually integrally affine. Suppose for a moment that α

is order preserving and that f (t) = t + kq for t � 0, where k ∈ ZZ. Then

f α(t) = (α ◦ f ◦ α−1)(t) = α(f (α−1(t))) = α(α−1(t) + kq) = t + r

must hold for some r ∈ ZZ. In other words, α−1(t+ r) = α−1(t)+ s for some integers r
and s and all t � 0. Since f was arbitrary, we may assume that k 6= 0, which implies
that s 6= 0, and hence also r 6= 0. Therefore α−1 , and hence α , must be integrally
periodically affine near infinity. A similar calculation holds for t � 0 and also when
α is order reversing. Consequently, each commensuration of F must be eventually
integrally periodically affine.

It remains to show that each eventually integrally periodically affine β ∈ P induces a
commensuration of F by conjugation. Suppose β(t + p) = β(t) + q for t � 0 and
β(t + p′) = β(t) + q′ for t � 0, with p, q, p′, q′ ∈ ZZ \ {0}. Let U = [p′, p] if β is



6 José Burillo, Sean Cleary and Claas E Röver

order preserving and set U = [p, p′] otherwise. Then for f ∈ U , we have

f β(t) =
{

β(β−1(t) + kp) = t + kq, t � 0
β(β−1(t) + k′p′) = t + k′q′, t � 0

where k, k′ ∈ ZZ depend on f . Together with a similar argument for β−1 one easily
sees that Uβ = [q′, q] or [q, q′], depending on whether β is order preserving or not.
Theorem 3.1 is thus established.

We immediately obtain the following corollaries from this result.

Corollary 3.3 A subgroup U of F of finite index is isomorphic to F if and only if
U = [p, q] for some positive integers p and q.

Proof Suppose U is a subgroup of finite index in F . If U is isomorphic to F , then
there exists an eventually integrally periodically affine α ∈ P with Fα = U and
calculations as above show that U must be of the form [p, q]. On the other hand, the
final paragraph of the proof of the theorem read with p = p′ = 1 shows that [q′, q]
is isomorphic to F for every choice of positive integers q and q′ . This completes the
proof.

Finally, since each subgroup of finite index in F contains [p, q] for some positive
integers p and q by Proposition 2.1, we have the following results.

Corollary 3.4 Every finite-index subgroup of F is virtually F .

Corollary 3.5 A group is commensurable with F if and only if it is a finite extension
of F .

4 The Structure of Com(F)

Descriptions of elements of Com(F) as conjugations in P allow us to study its structure
as a group. An element α of Com(F) is eventually integrally periodically affine, so
there exist positive integers p, p′, q, q′ and a real number M such that

α(t + p) = α(t) + q, for t > M

α(t + p′) = α(t) + q′, for t < −M.

We need a lemma about affine functions, whose proof is elementary and left to the
reader.
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Lemma 4.1 Let f : IR → IR be an integrally periodically affine map, and assume that
there are integers i, i′, j, j′ such that for all t ∈ IR we have

f (t + i) = f (t) + j and f (t + i′) = f (t) + j′.

Then we have

f (t + r) = f (t) + s,

r = gcd(i, i′) and s = gcd(j, j′).where

Furthermore, we have
i
j
=

i′

j′
.

From this lemma, we see that the integers p, p′, q, q′ for element of Com(F) depend
only on the element.

We recall that Com(F) has a subgroup of index 2, denoted Com+(F), formed by the
commensurations induced by conjugations by piecewise-linear maps which preserve
the orientation of IR.

Proposition 4.2 There exists a surjective homomorphism Φ : Com+(F) → QI ∗ ×QI ∗

defined by

Φ(f ) =
(

p
q
,

p′

q′

)
.

Here QI ∗ denotes the multiplicative group of the positive rational numbers.

The map is obviously well-defined due to the lemma above, and it is very easy to
see that it is a homomorphism of groups. The two components of the map capture
the behavior at both ends, eventually near −∞ and eventually near +∞. The two
numbers p/q and p′/q′ measure the “rate of growth" of the map at both ends.

A corollary of this result is that, as expected, Com(F) is infinitely generated.

5 Commensurations as Quasi-isometries

Let G be a finitely generated group. Quasi-isometries of G can be naturally composed,
and there is a natural notion of equivalence class of quasi-isometries. Two quasi-
isometries are considered equivalent if they are a bounded distance apart in the sense
that f and g are considered equivalent if there exists a number M > 0 such that
d(f (t), g(t)) ≤ M for all t in G.
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Equivalence classes of quasi-isometries form elements of the group of quasi-isometries
QI(G) of G. It is well known that the commensurator group admits a map to the quasi-
isometry group, since all commensurations give maps between finite index subgroups
which are canonically quasi-isometric to the ambient group. The result we want to
prove in this section is that for Thompson’s group F , this map is one-to-one.

Theorem 5.1 The natural homomorphism Com(F) → QI(F) is injective.

We begin with an elementary lemma.

Lemma 5.2 Given an element τ ∈ P which is different from the identity, there
exist two intervals I and J of the real line, whose endpoints are dyadic integers, with
τ (I) = J , and such that I ∩ J = ∅.

Proof The case when the slope of τ is always 1 or −1 is trivial. For a map t 7→ t + k
has a small interval (of length less than k) whose image is disjoint from it. If τ = −Id
the result is trivial.

If the slope is not constantly equal to 1, it has a piece with slope ±2i with i 6= 0.
Assume without loss of generality (by possibly taking τ−1 instead of τ ) that i > 0.
Hence there are two intervals [a, b] and [c, d] such that τ (a) = c and τ (b) = d and
also d − c = 2i(b− a). It is possible that [a, b] and [c, d] overlap, but since [c, d] is
much larger than [a, b] (at least twice the size), we can choose as J a small interval
inside [c, d] which is disjoint from [a, b]. By construction, the preimage I of J is in
[a, b], and hence I and J are disjoint.

Proof of Theorem 5.1 We now take a nontrivial τ ∈ Com(F). By the previous
lemma, there exist intervals I and J satisfying the conditions stated above and, in
addition, that I , and hence J , have endpoints of the form k/2j and (k + 1)/2j . We
consider all elements of F whose support (that is, the part where they are not the
identity) is contained in I . Those elements form a subgroup which is isomorphic to
F itself. Let f be one such element. Since its support is inside I , its image under the
commensuration τ , that is, f τ = τ ◦ f ◦ τ−1 , has support inside J .

Hence, the distance (inside F ) from f to f τ is given by the distance from the identity
to the element f τ f−1 . But this element has its support inside the disjoint union I ∪ J ,
and the two parts are independent from each other (one given by f and the other one
by f τ ). By work of Cleary and Taback [5], this subgroup—elements with support
in I ∪ J which is a direct product of two clone subgroups in their terminology—is
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quasi-isometrically embedded in F . Hence, we can take elements fn with support
inside I with arbitrarily large norm, and hence f τ

n f−1
n has also arbitrarily large norm.

This proves that the image of τ , a quasi-isometry, is not at bounded distance from the
identity and the proof is complete.
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