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Abstract. We describe the automorphism groups and the ab-
stract commensurators of Houghton’s groups. Then we give sharp
estimates for the word metric of these groups and deduce that
the commensurators embed into the corresponding quasi-isometry
groups. As a further consequence, we obtain that the Houghton
group on two rays is at least quadratically distorted in those with
three or more rays.

Introduction

The family of Houghton groups Hn was introduced by Houghton [7].
These groups serve as an interesting family of groups, studied by Brown
[2], who described their homological finiteness properties, by Röver
[10], who showed that these groups are all subgroups of Thompson’s
group V , and by Lehnert [9] who described the metric for H2. Lee [8]
described isoperimetric bounds, and de Cornulier, Guyot, and Pitsch
[4] showed that they are isolated points in the space of groups.

Here, we classify automorphisms and determine the abstract com-
mensurator of Hn. We also give sharp estimates for the word metric
which are sufficient to show that the map from the abstract commen-
surator to the group of quasi-isometries of Hn is an injection.

1. Definitions and background

Let N be the set of natural numbers (positive integers) and n ≥ 1 be
an integer. We write Zn for the integers modulo n with addition and
put Rn = Zn ×N. We interpret Rn as the graph of n pairwise disjoint
rays; each vertex (i, k) is connected to (i, k + 1). We denote by Symn,
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FSymn and FAltn, or simply Sym, FSym and FAlt if n is understood, the
full symmetric group, the finitary symmetric group and the finitary
alternating group on the set Rn, respectively.

The Houghton group Hn is the subgroup of Sym consisting of those
permutations that are eventually translations (of each of the rays). In
other words, the permutation σ of the set Rn is in Hn if there exist
integers N ≥ 0 and ti = ti(σ) for i ∈ Zn such that for all k ≥ N ,
(i, k)σ = (i, k + ti); throughout we will use right actions.

Note that necessarily the sum of the translations ti must be zero
because the permutation needs of course to be a bijection. This implies
that H1

∼= FSym.
For i, j ∈ Zn with i 6= j let gij ∈ Hn be the element which translates

the line obtained by joining rays i and j, given by

(i, n)gij = (i, n− 1) if n > 1,

(i, 1)gij = (j, 1),

(j, n)gij = (j, n+ 1) if n ≥ 1 and

(k, n)gij = (k, n) if k /∈ {i, j}.

We also write gi instead of gi i+1. It is easy to see that {gi | i ∈ Zn}, as
well as {gij | i, j ∈ Zn, i 6= j}, are generating sets for Hn if n ≥ 3 as we
can simply check that the commutator [g0, g1] = g−10 g−11 g0g1 transposes
(1, 1) and (2, 1). In the special case of H2, an additional generator to g0
is needed and we choose τ which fixes all points except for transposing
(0, 1) and (1, 1).

It is now clear that the commutator subgroup of Hn is given by

H′n =

{
FAlt, if n ≤ 2
FSym, if n ≥ 3

For n ≥ 3, we thus have a short exact sequence

1 −→ FSym −→ Hn
π−→ Zn−1 −→ 1

where π(σ) = (t0(σ), . . . , tn−2(σ)) is the abelianization homomorphism.
We note that as the sum of all the eventual translations must be zero,
we have the last translation is determined by the preceding ones:

(1) tn−1(σ) = −
n−2∑
i=0

ti(σ).

We will use the following facts freely throughout this paper, see
Dixon and Mortimer [5] or Scott [11].
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Lemma 1.1. The group FAlt is simple and equal to the commutator
subgroup of FSym, and Aut(FAlt) = Aut(FSym) = Sym.

2. Automorphisms of Hn

Here we determine the automorphism group ofHn. First we establish
that we have to look no further than Sym. We let NG(H) denote the
normalizer, in G, of the subgroup H of G.

Proposition 2.1. Every automorphism of Hn, n ≥ 1, is given by
conjugation by an element of Sym, that is to say Aut(Hn) = NSym(Hn).

Proof. From the above, the finitary alternating group FAlt is the sec-
ond derived subgroup of Hn, and hence characteristic in Hn. So ev-
ery automorphism of Hn restricts to an automorphism of FAlt. Since
Aut(FAlt) = Sym, this restriction yields a homomorphism Aut(Hn) −→
Sym and we only need to show that it is injective.

In order to see this let α ∈ Aut(Hn) be an automorphism whose
restriction to FAlt is trivial. We let k ∈ N and consider the following
six consecutive points a` = (i, k + `) of Rn for ` ∈ {0, 1, . . . , 5}.

We denote by gαi the image of gi under α, and by (x y z) the 3-cycle
of the points x, y and z. Using the identities

g−1i (a1 a2 a3)gi = (a0 a1 a2) and g−1i (a3 a4 a5)gi = (a2 a3 a4)

and applying α, which is trivial on FAlt, we get

(gαi )−1(a1 a2 a3)g
α
i = (a0 a1 a2) and (gαi )−1(a3 a4 a5)g

α
i = (a2 a3 a4),

which imply that gαi maps a3 to a2. Applying a similar argument to all
points in the branches i and i + 1, it follows that gαi = gi, and since i
was arbitrary, this means that α is trivial. �

With Lemma 1.1 in mind we now present the complete description
of Aut(Hn).

Theorem 2.2. For n ≥ 2, the automorphism group Aut(Hn) of the
Houghton group Hn is isomorphic to the semidirect product Hn o Sn,
where Sn is the symmetric group that permutes the n rays isometrically.

Proof. It is clear that every isometric permutation of the rays, (that is,
automorphism of the graph Rn), induces an automorphism of Hn. By
the proposition, it therefore suffices to prove that every α ∈ Sym which
normalizes Hn must map (i, k +m) to (j, l +m) for some k, l ≥ 1 and
all m ≥ 0.

To this end, we pick α ∈ NSym(Hn) and σ ∈ Hn. Since σα(= α−1σα)
is in Hn and maps the point xα to (xσ)α, these two points must lie
on the same ray for all but finitely many x ∈ Rn. Similarly, x and
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xσ lie on the same ray for all but finitely many x ∈ Rn, as σ ∈ Hn.
Combining these two facts, we see that α maps all but finitely many
points of ray i to one and the same ray, say ray j.

Notice that we have the freedom to choose σ such that x and xσ are
neighbors for all but finitely many x on ray i. If x and xα were not
neighbors on ray j for infinitely many x, then tj(σ

α) > 1. However,
there is simply is not enough room left on ray i so that α−1 can map
all but finitely many points from ray j to ray i. So tj(σ

α) = 1 and the
result follows. �

3. Commensurations of Hn

First, we recall that a commensuration of a group G is an isomor-

phism A
φ−→ B, where A and B are subgroups of finite index in G.

Two commensurations φ and ψ of G are equivalent if there exists a
subgroup A of finite index in G, such that the restrictions of φ and ψ
to A are equal. The set of all commensurations of G modulo this equiv-
alence relation forms a group, known as the (abstract) commensurator
of G, and is denoted Com(G). In this section we will determine the
commensurator of Hn.

For a moment, we let H be a subgroup of a group G. The relative
commensurator of H in G is denoted ComG(H) and consists of those
g ∈ G such that H ∩Hg has finite index in both H and Hg. Similar to
the homomorphism from NG(H) to Aut(H), there is a homomorphism
from ComG(H) to Com(H); Its kernel consists of those elements of G
that centralize a finite index subgroup of H.

In order to pin down Com(Hn), we first establish that every com-
mensuration of Hn can be seen as conjugation by an element of Sym,
and then characterize ComSym(Hn).

Since a commensuration φ and its restriction to a subgroup of finite
index in its domain are equivalent, we can restrict our attention to the
following family of subgroups of finite index in Hn, in order to exhibit
Com(Hn). For every integer p ≥ 1, we define the subgroup Up of Hn

by

Up = 〈FAlt, gpi | i ∈ Zn〉.
We collect some useful properties of these subgroup first, where

A ⊂f B means that A is a subgroup of finite index in B.

Lemma 3.1. (1) For every p, the group Up coincides with Hp
n, the

subgroup generated by all pth powers in Hn, and hence is char-
acteristic in Hn.
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(2) U ′p =

{
FAlt, p even
FSym, p odd

and |Hn : Up| =
{

2pn−1, p even
pn−1, p odd

.

(3) For every finite index subgroup U of Hn, there exists a p ≥ 1
with FAlt = U ′p ⊂ Up ⊂f U ⊂f Hn.

Proof. First we establish (2). We know that [gi, gj] is either trivial,
when j /∈ {i − 1, i + 1}, or an odd permutation. So the commutator
identities [ab, c] = [a, c]b[b, c] and [a, bc] = [a, c][a, b]c imply the first
part, and the second part follows immediately using the facts from
Section 1.

Part (1) is now an exercise, using that FAltp = FAlt.
In order to show (3), let U be a subgroup of finite index in Hn. The

facts that FAlt is simple and U contains a normal finite index subgroup
of Hn, imply that FAlt ⊂ U . Let p be the smallest even integer such
that (pZ)n−1 is contained in the image of U in the abelianisation of Hn.
It is now clear that Up is contained in U . �

Noting that Com(H1) = Aut(H1) = Sym, we now characterize the
commensurators of Houghton’s groups.

Theorem 3.2. Let n ≥ 2. Every commensuration of Hn normalizes
Up for some even integer p. The group Np = NSym(Up) is isomorphic
to Hn o (Sp o Sn), and Com(Hn) is the direct limit of Np with even p
under the natural embeddings Np −→ Npq for q ∈ N.

Proof. Let φ ∈ Com(Hn). By Lemma 3.1, we can assume that Up is
contained in the domain of both φ and φ−1 for some even p. Let V
be the image of Up under φ. Then V has finite index in Hn and so
contains FAlt, by Lemma 3.1. However, the set of elements of finite
order in V equals [V, V ], whence [V, V ] = FAlt, as FAlt and FSym are
not isomorphic. This means that the restriction of φ to FAlt is an
automorphism of FAlt, and hence yields a homomorphism

ι : Com(Hn) −→ ComSym(Hn).

That ι is injective follows from a similar argument to the one in Propo-
sition 2.1 applied to gi

p and six points of the form a` = (i, k+ p`) with
` ∈ {0, 1, . . . , 5}. Since the centralizer in Sym of FAlt, and hence of
any finite index subgroup of Hn, is trivial, the natural homomorphism
from ComSym(Hn) to Com(Hn) mentioned above is also injective, and
we conclude that Com(Hn) is isomorphic to ComSym(Hn).

From now on, we assume that φ ∈ ComSym(Hn). In particular, the
action of φ is given by conjugation, and our hypothesis is that Uφ

p ⊂ Hn.
Now we can apply the argument from the second paragraph in the proof
of Theorem 2.2 to σ ∈ U and σφ (instead of σα), which only uses that
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both are elements of Hn. So φ maps all but finitely many points of ray
i to one and the same ray, say ray j. The same argument shows that
φ−1 maps all but finitely many points of ray j to ray i and we conclude
that φ is a bijection between ray i and ray j after excluding finitely
many points.

Since gpi has p infinite orbits intersecting ray i, the element (gpi )
φ

has, up to finitely many exceptions, p infinite orbits intersecting ray j.
Since (gpi )

φ is an element of Hn, we see that tj((g
p
i )
φ) = ±p. The same

argument applies to ray i+1 and almost all of its image under φ which
shows that (gpi )

φ ∈ Up. Since i was arbitrary and similar arguments
hold for φ−1, this means that φ normalises Up.

This proves the theorem, where Sp o Sn is the permutational wreath
product of the symmetric group of degree p, which permutes the residue
classes modulo p of one ray isometrically, and the symmetric group of
degree n, acting as top group, permuting the n rays isometrically. �

We note that Com(Hn) is not finitely generated, for if it were, it
would lie in some maximal Np.

4. Metric estimates for Hn

In this section we will give sharp estimates for the word length of
elements of Houghton’s groups. This makes no sense for H1 which is
not finitely generated. As mentioned in the introduction, the metric in
H2 was described by Lehnert [9]. In order to deal with Hn for n ≥ 3,
we introduce the following measure of complexity of an element.

Given σ ∈ Hn, we define pi(σ), for i ∈ Zn, to be the largest integer
such that (i, pi(σ))σ 6= (i, pi(σ) + ti(σ)). Note that if ti(σ) < 0, then
necessarily pi(σ) ≥ |ti(σ)|, as the first element in each ray is numbered
1.

The complexity of σ ∈ Hn is the natural number P (σ)), defined by

P (σ) =
∑
i∈Zn

pi(σ).

And the translation amount of σ is

T (σ) =
1

2

∑
i∈Zn

|ti(σ)|.

The above remark combined with (1) immediately implies P (σ) ≥
T (σ). It is easy to see that an element with complexity zero is trivial,
and only the generators gij have complexity one.

Theorem 4.1. Let n ≥ 3 and σ ∈ Hn, with complexity P = P (σ) ≥ 2.
Then the word length |σ| of σ with respect to any finite generating set
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satisfies

P/C ≤ |σ| ≤ KP logP,

where the constants C and K only depend on the choice of generating
set.

Proof. Since the word length with respect to two different finite gen-
erating sets differs only by a multiplicative constant, we can and will
choose { gij | i, j ∈ Zn, i 6= j} as generating set to work with, and show
that the statement holds with C = 1 and K = 7.

The lower bound is established by examining how multiplication by
a generator can change the complexity. Suppose σ has complexity P
and consider σgij. It is not difficult to see that

(2) pk(σgij) =


pk(σ) + 1, if k = i and (i, pi(σ) + 1)σ = (i, 1)
pk(σ)− 1, if k = j, (j, pj(σ) + 1)σ = (j, 1) and

(j, pj(σ))σ = (i, 1)
pk(σ), otherwise

where the first two cases are mutually exclusive, as i 6= j. Thus
|P (σgij)− P (σ)| ≤ 1, which establishes the lower bound.

The upper bound is obtained as as follows. Suppose σ ∈ Hn has
complexity P . First we show by induction on T = T (σ) that there is
a word ρ of length at most T ≤ P such that the complexity of σρ is P̄
with P̄ ≤ P and T (σρ) = 0. The case T = 0 is trivial. If T > 0, then
there are i, j ∈ Zn with ti(σ) > 0 and tj(σ) < 0. So T (σgij) = T − 1.
Moreover, P (σgij) ≤ P , because the first case of (2) is excluded, as
it implies that ti(σ) = −pi(σ) ≤ 0, contrary to our assumption. This
completes the induction step.

We are now in the situation that σρ ∈ FSym and loosely speaking
we proceed as follows.

(1) We push all irregularities into ray 0, i.e. multiply by
∏
gi0

pi(σρ).
(2) We push all points back into the ray to which they belong,

except for those from ray 0 which we mix into ray 1, say.
(3) We push out of ray 1 separating the points belonging to rays 0

and 1 into ray 0 and any other ray, say ray 2, respectively.
(4) We push the points belonging to ray 1 back from ray 2 into it.

These four steps can be achieved by multiplying by an element µ
of length at most 4P̄ , such that σρµ is an element which, for each i,
permutes an initial segment Ii of ray i. It is clear that µ can be chosen
so that

∑
|Ii| ≤ P̄ . Finally, we sort each of these intervals using a

recursive procedure, modeled on standard merge sort.
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In order to sort the interval I = I2 say, we push each of its points
out of ray 2 and into either ray 0 if it belongs to the lower half, or to
ray 1 if it belongs to the upper half of I. If each of the two halves
occurs in the correct order, then we only have to push them back into
ray 2 and are done, having used 2|I| generators. If the two halves are
not yet sorted, then we use the same “separate the upper and lower
halves” approach on each of them recursively in order to sort them. In
total this takes at most 2|I| log2 |I| steps.

Altogether we have used at most

P + 4P̄ + 2
∑
i∈Zn

|Ii| log2 |Ii| ≤ 7P log2 P

generators to represent the inverse of σ; we used the hypothesis P ≥ 2
in the last inequality. �

We note that because there are many permutations, the fraction
of elements which are close to the lower bound goes to zero in much
the same way as shown for Thompson’s group V by Birget [1] and its
generalization nV by Burillo and Cleary [3].

Lemma 4.2. Let Bk be the set of elements of Hn with complexity
P ≤ k. The fraction of elements of Bk which have word length greater
than k log k converges exponentially fast to 1.

Proof. In Bk, we consider the subset of elements with T = 0 but which
do permute at least one of the points at distance k on one of the rays, so
T = 0 and P = k. There are at least k! elements of this type. Since the
number of elements of word length k in any finitely generated group
with d generators is at most (2d)k, the relative growth rates of the
factorial and exponential functions give us the result. �

5. Subgroup embeddings

We note that each Hn is a subgroup of Hm for n < m and that our
estimates together with work of Lehnert are enough to give at least
quadratic distortion for some of these embeddings.

Theorem 5.1. The group H2 is at least quadratically distorted in Hm

for m ≥ 3.

Proof. We consider the element σn of H2 which has T (σn) = 0 and
transposes (0, k) and (1, k) for all k ≤ n. Then σn corresponds to the
word gn defined in Theorem 8 of [9], where it is shown to have length of
the order of n2 with respect to the generators of H2 in Lemma 10 there,
which are exactly the generators for H2 given in the introduction. One
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easily checks that σn = g02
ng12

ng02
−ng12

−n in H3. Thus a family of
words of quadratically growing length inH2 has linearly growing length
in H3, which proves the theorem. �

A natural, but seemingly difficult, question is whetherHn is distorted
in Hm for 3 ≤ n < m.

6. Some quasi-isometries of Hn

Commensurations give rise to quasi-isometries and are often a rich
source of examples of quasi-isometries. Here we show that the natural
map from the commensurator of Hn to the quasi-isometry group of
Hn, which we denote by QI(Hn), is an injection. That is, we show that
each commensuration is not within a bounded distance of the identity.
That this is an injection also follows from the more general argument
of Whyte which appears as Proposition 7.5 in Farb-Mosher [6].

Theorem 6.1. The natural homomorphism from Com(Hn) to QI(Hn)
is an embedding for n ≥ 2.

Proof. We will show that for each non-trivial φ ∈ Com(Hn) and every
N ∈ N we can find a σ ∈ Hn such that d(σ, σφ) ≥ N . By Theorem 3.2,
we can and will view φ as a non-trivial element of Np ⊂ Sym for some
even p.

If φ eventually translates a ray i non-trivially to a possibly different
ray j, then we let σ = ((i, N) (i, N + 1)), a transposition in the trans-
lated ray. The image of σ under conjugation by φ is the transposition
((j,N + t), (j,N + t′ + 1)), and the distance d(σ, σφ) is the length of
σ−1σφ, which is at least N since it moves at least one point at distance
N down one of the rays.

If φ does not eventually translate a ray but eventually non-trivially
permutes ray i with another ray j, then we can show boundedness away
from the identity by taking σ = ((j,N) (j,N + 1)). The point (i, N) is
fixed by σ but is moved to (i, N + 1) under σφ ensuring that the length
of σ−1σφ is at least N .

Finally, if φ does not have the preceding two properties, then φ is
a non-trivial finitary permutation, supported on an interval of size P
on ray i and we let σ = gi−1

N+P . The image of σ under φ is then a
finitary permutation involving points at distance at least N in ray i,
giving a lower bound of at least N for d(σ, σφ). �

7. Co-Hopficity

Houghton’s groups are long known to be Hopfian although they are
not residually finite, see [4]. In this section we will prove that Hn is not
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co-Hopfian, by exhibiting a map which is injective but not surjective.
The map is the following:

f : Hn −→ Hn

s 7→ f(s)

defined by: if s(i, n) = (j,m), then:

f(s)(i, 2n− 1) = (j, 2m− 1) and f(s)(i, 2n) = (j, 2m).

It is straightforward to show that f is a homomorphism. It is in-
jective, because if s is not the identity with s(i, n) 6= (i, n), then
f(s)(i, 2n) 6= (i, 2n). And clearly the map is not surjective, because
the permutation always sends adjacent points (i, 2n− 1), (i, 2n) to ad-
jacent points, and a permutation which does not do this cannot be in
the image.

Theorem 7.1. Houghton’s groups Hn are not co-Hopfian.
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