Subgroups of
Finitely Presented Simple Groups

Claas H.E. W. Rover

Pembroke College
University of Oxford
Trinity Term 1999

A thesis submitted in partial fulfilment of the requirements for
the degree of Doctor of Philosophy at the University of Oxford.



Subgroups of
Finitely Presented Simple Groups

Claas H. E. W. Rover

Pembroke College
University of Oxford
Trinity Term 1999

A thesis submitted in partial fulfilment of the requirements for
the degree of Doctor of Philosophy at the University of Oxford.

Abstract

This thesis is concerned with the possible structure of subgroups of
finitely presented infinite simple groups. We survey the finitely presented
simple groups that were known prior to this thesis and prove that they
are all torsion locally finite except possibly those for which the conjugacy
problem is unsolvable. A group is called torsion locally finite if every finitely
generated torsion subgroup is finite.

Then we generalise the old methods for constructing finitely presented
simple groups. This, in turn, enables us to describe constructive embeddings
of certain recursively presented groups into finitely presented groups which
in theory exist by Higman’s Embedding Theorem.

What is more, we can construct a class of finitely presented simple
groups Hy,' that are not torsion locally finite. More precisely, they have
subgroups isomorphic to Grigorchuk-Gupta-Sidki groups which are finitely
generated infinite torsion groups under suitable assumptions. We also prove
that each group #;,' is generated by two elements.

In the last two chapters we investigate algorithmic decision problems
for the groups #y,, thereby obtaining a positive answer to the order prob-
lem. We also prove that the conjugacy problem is solvable for all elements
with ‘flat symbols’ if p is a prime. This includes all periodic elements, so
in particular the conjugacy problem for periodic elements is shown to be
solvable. In addition, we describe an effective procedure to decide whether
an element has a flat symbol.

We also show that the family #H,' of finitely presented simple groups
contains a countable infinity of isomorphism classes.
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INTRODUCTION

This work grew out of a desire to get a more detailed picture of the possible
structure of subgroups of finitely presented simple groups. The first such
groups that come to mind are probably finite simple groups, which obviously
have only finite subgroups. Conversely, every finite group can be embedded
in some alternating group of sufficiently large degree, for instance, and hence
in a finite simple group. This is all we want to say about finite simple groups,
and from now on, ‘finitely presented simple group’ always means ‘infinite
finitely presented simple group’.

The motivations for our study are numerous. Firstly, simple groups have
played an important role in group theory since its inception. Secondly, the
class of finitely presented groups is in many ways the most important and
natural class of infinite groups (these are fundamental groups of compact
manifolds, for example) and has many interesting subclasses, e.g., hyper-
bolic groups, automatic groups, linear groups over the integers, and Fuch-
sian groups, to mention just a few. Also very interesting is their connection
with algorithmic properties highlighted in the famous embedding theorem
of G. Higman [23]: a finitely generated group is embeddable in a finitely
presented group if and only if it is recursively presented. To say that a
finitely generated group is recursively presented means precisely that there
is a recursively enumerable set of defining relations. The set of all relations
(words representing the identity) is recursive if and only if the group has a
solvable word problem, i.e., there is an algorithm which, given an arbitrary
word on the generators, decides whether this word represents the trivial el-
ement. This leads to one of the few general results about finitely presented
simple groups. Kuznetsov [29] proved that every finitely presented simple
group has a solvable word problem. In fact, this is true for every recur-
sively presented simple group. Inspired by Higman’s embedding theorem
one might seek an algebraic characterisation of groups with solvable word
problem. Taking Kuznetsov’s result into account, it seems reasonable to
pose the following conjecture (see [4]).

Boone-Higman-Conjecture: A finitely generated group has a solvable word
problem if and only if it can be embedded in a finitely presented simple
group.

We would have loved to prove this conjecture but it appears to be very



difficult. However, we do prove several new and related results. Some of
them can be summarised as follows.

Theorem A. There are countably many non-isomorphic 2-generated finitely
presented simple groups with finitely generated infinite torsion subgroups.

As we believe that our results can be more appreciated by seeing them within
the present state of knowledge, a quick survey precedes a more detailed
discussion of our theorems.

The study of finitely presented simple groups began in 1965 when R. J.
Thompson discovered the first two examples (see [40] for a description).
These are the groups we call G2 1 and T ;. Viewing G2 as a subgroup
of an uncountable group, Thompson [40] proved that a finitely generated
group has a solvable word problem if and only if it is a subgroup of a finitely
generated simple group which, in turn is a subgroup of a finitely presented
group. Moreover, the finitely presented group can be chosen to have a
solvable word problem. This is still the most comprehensive result towards
the Boone-Higman-Conjecture. Note that there are finitely presented groups
with unsolvable word problem, e.g. [32],[3],[31].

In 1974 Higman, upon hearing about Thompson’s group, constructed in [24]
a countably infinite family of finitely presented simple groups generalising
Thompson’s G2 1. These are the commutator subgroups of the groups called
G, later in this work. (That name is the same as in [24] and the subscripts
are integers n > 2, r > 1.) He also showed that this family contains infinitely
many isomorphism types. Some time later, in 1987, K. S. Brown discovered
a family of finitely presented simple subgroups of the groups G, » which are
generalisations of Thompson’s T 1. We will meet these briefly in Chapter 2.

There are several ways to describe these groups. They are automorphism
groups of r-generated free algebras in the variety of algebras of sets that are
in bijection with their own n-th direct power, cf. [24]. They are also groups
of piecewise linear homeomorphisms of the unit interval with prescribed
slopes and limited sets of non-differentiable points (see for example [39]
and [5]). Furthermore, they are groups of tree diagrams of finite n-ary r-
forests. This is the approach in [10]. Yet another point of view, taken in
[35] for instance, is their interpretation as groups of maximal inescapable
isomorphisms. In this work we use the latter two descriptions, and they are
explained in detail in Chapter 1.

The groups G, are still not fully understood. For example, the isomor-
phism problem is not yet known to be solvable in this class of groups. How-
ever, Higman’s work [24] gives quite some insight. And, amongst many other
results, he shows that the group GL3(Z) of invertible three-by-three matri-
ces over the integers is not isomorphic to a subgroup of any of the groups
Gp,r- Note that GL,(Z) has a solvable word problem, since multiplication
of matrices is effective and only the identity matrix is the trivial element.



His results also imply that the additive group of the rational numbers can-
not be embedded in any G, , and neither can the Baumslag-Solitar groups
BS(l,m) which are generated by two elements a and b subject to the single
defining relation b~ 'alb = a™ if m divides .

After studying the obvious generalisations (the groups Gy, , in this work) of
Thompson’s uncountable supergroup, E. A. Scott [36] showed in 1984 that
for any positive integer n there exists a finitely presented simple group with
subgroups isomorphic to GL,(Z). She did this using her method devel-
oped in [35] that can be used to embed certain finitely presented groups in
finitely presented simple groups: the f-construction. This is explained in
Section 3.3.

The key to these constructions is Thomson’s Lemma which says that every
subgroup of G, that contains Gy, has a simple commutator subgroup
(Lemma 2.3). So, for example, one strategy to obtain finitely presented
simple groups is as follows: construct finitely presented supergroups of G, '
inside G, and make sure that their commutator subgroups are of finite
index. This is exactly what can be done with the #-construction, and our
constructions also follow these lines.

One of our results (Theorem 4.7) says that every finitely presented simple
group obtained with the #-construction from a torsion locally finite group
is also torsion locally finite. We call a group torsion locally finite if every
finitely generated torsion subgroup is finite. Putting this together with the
observation that each countable locally finite group is a subgroup of any
group G, (see [24] or Theorem 2.4) we get a complete characterisation
of torsion subgroups of Gy, : they are precisely the countable locally finite
groups. This appears to be new.

A weakness of the #-construction is that it applies (a priori) to finitely pre-
sented groups only. Therefore we develop a generalisation of Scott’s method
in Chapter 3, which enables us to construct embeddings of certain recursively
presented groups into finitely presented simple groups. More precisely, we
prove that every Grigorchuk group defined by an almost periodic sequence
is isomorphic to a subgroup of some finitely presented simple group (Theo-
rem 4.10). These simple groups are the derived groups of the groups called
Hp in Chapter 4 where one also finds the necessary definitions concerning
Grigorchuk groups.

The finitely presented simple groups H;,' are interesting for at least two
reasons. On the one hand, their constructions are rather rare examples of
constructive embeddings of recursively presented groups in finitely presented
groups. (It is shown for example in [17] that a non-trivial Grigorchuk group
is not finitely presented.) For one specific Grigorchuk group such an embed-
ding was recently obtained by R. I. Grigorchuk [19] using an HNN-extension.
In addition, he needs an explicit presentation, whereas our methods do not



require a presentation at all. On the other hand, the groups H;,’ are prob-
ably the first finitely presented simple, but not torsion locally finite, groups.
This is simply because Grigorchuk groups are finitely generated infinite tor-
sion groups for suitably chosen (periodic) defining sequences. Our methods
can also be applied to embed other finitely generated infinite torsion groups
in finitely presented simple groups, for example, those studied by N. Gupta
and S. Sidki in [22] and suitable special groups in the sense of [17]. We also
prove that the direct product of any finite family of Grigorchuk-Gupta-Sidki
groups whose defining sequences are periodic can be embedded in a finitely
presented simple group (Theorem 4.16).

There is one class of previously known finitely presented simple groups that
we have not been able to show are torsion locally finite, namely the finitely
presented simple groups with unsolvable conjugacy problem described by
Scott in [37]. Their construction still relies on Thompson’s Lemma, but does
not use the #-construction. Hence our criterion for torsion locally finiteness
does not apply, and therefore we cannot assure that the groups Hy,' are
new finitely presented simple groups. However, we conjecture that these
groups are also torsion locally finite.

One way out of this dilemma would be a solution of the conjugacy problem
for Hy,'. In such an attempt we have only succeeded in describing a pro-
cedure that solves the conjugacy problem for elements with ‘flat’ symbols
(Theorem 6.13) if p is prime. Every periodic element has a flat symbol, so in
particular, the conjugacy problem for periodic elements of 4, ; is shown to
be solvable. This would be worthless without being able to decide whether
a given element has finite order. So we show in Theorem 5.9 that the order
problem is solvable for elements of Hy,'. In fact we describe a procedure
which decides whether an element has a flat symbol. As a by-product we
prove that there is a countable infinity of isomorphism types among the
groups My, (Theorem 6.14).

Besides all these new results, from a broader point of view, our finitely
presented simple groups Hy,' are after all groups of maximal inescapable
isomorphisms, and as such not so far away from the groups G,,’ and the
groups constructed by Scott. Hence, we should mention that recently M.
Burger and S. Mozes constructed very different finitely presented simple
groups in [9]. These are lattices in direct products of two automorphism
groups of regular (non-rooted) trees, and can also be seen as free products
with amalgamation of two finitely generated free groups with the amalga-
mated subgroup having finite index in each factor. In particular, they are
torsion-free, and hence not isomorphic to any of the groups Gy’ or Hy,'.

Let us now give an outline of the individual chapters of this work. We fix
our notation and embark on some conventions in the first section of Chap-
ter 1. The remainder of that chapter is a complete introduction to groups



of maximal inescapable isomorphism including the language of symbols and
tree diagrams. The basic properties of maximal inescapable isomorphisms
are gathered there as well.

Chapter 2 presents a selection of known results about the groups Gy, » with
an emphasis on simplicity (Section 2.1) and the possible structure of sub-
groups. It contains a proof that G, , is generated by two elements and some
unpublished, though maybe known, results about subgroups. In particular,
we show that the Houghton groups are subgroups of every G, ;.

Mathematics’ technical side shows itself in Chapter 3. First we recall the
main features of Scott’s paper [35] and describe the #-construction. Then
we introduce fake expansibility as a generalisation of Scott’s expansibility,
and prove a criterion for finite presentability of certain groups of maximal
inescapable isomorphisms, namely fake- F-expansible groups, where E is a
finitely presented group.

The applications of this result, in particular the construction of the groups
Hspand Hyp' and the proof that they are generated by two elements occupy
most of Chapter 4. First, however, we record the results of Scott and prove
that the 0-construction preserves torsion locally finiteness.

Chapter 5 is a not-so-short but painless description of the algorithm that
solves the order problem for ;. And finally, Chapter 6 concerns the solv-
ability of the conjugacy problem for elements with flat symbols, in particular
periodic elements, of H,. An affirmative answer is obtained by a rather
long and detailed analysis of different kinds of specialised symbols if p is a
prime.

At the end of this work we have included an index of all the major definitions.
The reason for this is that we prefer to give definitions in the main text.
Since the defined terms are emphasised, readers should have no difficulty in
finding them using the index.

Equations are numbered inside each chapter, e.g., the equation labelled (3.4)
is the fourth equation in Chapter 3. Theorems, propositions, lemmas, and
corollaries are all treated as ‘proclaimed statements’ and also numbered
within chapters, e.g., Lemma 1.7 is the seventh statement in Chapter 1 but
not necessarily the seventh lemma of that chapter. References always give
both numbers, either in round brackets if they point to an equation, or as
in ‘Proposition 3.4, if a statement is the target.



CHAPTER 1

PRELIMINARIES

In this chapter we introduce the main objects of study and fix some notation
that is used throughout this thesis. Section 1.1 deals with basic group and set
theoretic notions and notational conventions. The remaining sections form
an elementary introduction to groups of maximal inescapable isomorphisms
which are the main objects of study in this work. Apart from Section 1.5
which is more or less borrowed from [10], most of that material can be
found in [35] with minor changes in the notation. We delay definitions of
more specialised terms to the places where they are needed.

1.1 CONVENTIONS AND NOTATION

We write Z,IN, and INy for the integers, the non-negative integers, and the
the positive integers, respectively. In particular, 0 ¢ IN and INy = IN U {0}.
By | X| we denote the cardinality of a set X and X \ Y is defined as {z €
X|z¢Y}.

For group elements g and h we write g” for h~'gh, the conjugate of g by
h, and let [g, h] denote the commutator g~'h~'gh of g and h. The derived
or commutator subgroup of the group G is denoted G’ and defined as the
subgroup generated by {[g,h]|g,h € G}, which is to be read as ‘the set of
all [g, h] such that g and h are elements of G’. Consequently, we write G”
for the commutator subgroup of the derived subgroup of G. For a subset
Y of G the subgroup of G generated by Y is denoted (Y') and we also use
the standard shorthand notations, e.g., G' = ([g,h]| g, h € G). The identity
element of a group and the trivial group, as well as the integer ‘one’, are
all denoted by 1, confusion being prevented by the context. If g is a group
element, we denote by |g| its order, and we call elements of finite order also
periodic or torsion elements. A torsion or periodic group is one with torsion
elements only.

If the group G acts on a set X then z9 denotes the image of z € X under
g € G. That is, all our actions are right actions and we use exponential
notation; thus, interpreted as an operator, gh means ‘g followed by h’ and
conjugation is one example. Frequently we will be dealing with permutations
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mof {a1,a9,...,a,}, a set with n elements, and it is convenient to interpret
m also as a permutation of the subscripts; thus a] and a;~ are equal. As
it is slightly odd to have superscripts inside subscripts, we will, in such
circumstances, depart from the convention above and write a;,; in place of
Q.

To be on the safe side and to avoid superfluous explanations later, we agree
to distinguish the direct product X;crU; and the restricted direct product
@ic; Ui of a family {U;}icr of groups, indexed by a set I, where the former
is the set of all functions f : I — ;<7 U; with if € U; under pointwise
composition, and the latter is the subgroup of those functions with i/ = 1
for all but finitely many i € I.

Let us finally recall the definition of some variants of wreath products. Sup-
pose G and H are groups acting on sets X respectively Y. Then the permu-
tational wreath product, denoted G1H, of G with H is the semidirect product
of Xyey Gy with H, where each Gy is isomorphic to G' and H permutes the
components according to its action on Y. If no actions are specified we as-
sume that G and H act on themselves via right multiplication (this is called
the standard wreath product in the literature). We will only need the case
where Y (or H in standard wreath products) is finite, and it is then conve-
nient to denote elements of G1 H as (gy,,---, 3y, )h, where g,;, € G(= Gy,)
and h € H. The important rule to remember is

h
(gyu cee agyr) = (gylh—la v 7gyrh_1)a

where as before, y;h means yf

1.2 INESCAPABLE BASES AND SUBSPACES

Let n,r € IN, n > 2, let W, be the set of all finite words over the alphabet
A = {ai1,a2,...,a,} including the empty word which we denote by 0, and
let X, be a set of r distinct symbols z1, ..., z, disjoint from A,. If U and V
are sets of words we define UV = {uv |u € U, v € V} where uv denotes the
concatenation of v and v. We also use the inductive definition U"*! = U™U,
n > 1, with U! = U and, if U = {u}, then we write u" for U".

The binary relation “u is a prefiz of v” (written v < v or v > u) equips
X, W, with a partial order. As usual we write u < v if u < v and u # v.
A subset B of X, W, is called independent if its elements are pairwise <-
incomparable and is said to be an inescapable basis if it is maximal among
independent subsets. Let B be an inescapable basis, b € B and define C as
(B\ {b}) U{ba;|1 < i < n}. Then C is easily seen to be an inescapable
basis, too, and we call C' the simple expansion of B at b or simply a simple
expansion of B. Furthermore, we call the inescapable basis D an expansion
of B if there is a finite family of inescapable bases By, ... B, with B = By,
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D = By, and B; is a simple expansion of B;_1 for 1 < i < m. Let us agree
to write B < D or D > B if D is an expansion of B. Note that every finite
inescapable basis is an expansion of the inescapable basis X..

An inescapable subspace of X, W, is a subset of the form U = BW,,, where B
is an inescapable basis. The term shall reflect the facts that UW,, C U and
for every v € X, W, there exists w € W,, such that vw € U. In fact, these two
conditions can also be used to define an inescapable subspace. If B is finite
then one says that U is a finitely based inescapable subspace. Furthermore,
if U is an inescapable subspace we denote by By its inescapable basis; this is
the set of minimal elements in the partially ordered set U with the induced
order from X,W,. It should be clear that U — By is a bijection between
inescapable subspaces and inescapable bases and that U’ C U if and only if
By = By.

Using the second characterisation of inescapable subspaces it is straight-
forward that every intersection of finitely many (finitely based) inescapable
subspaces is again a (finitely based) inescapable subspace. If By, ..., By, are
inescapable bases then we denote by | |/, B; the inescapable basis of the in-
escapable subspace i%; B;Wy, and, if m = 2 we also write By Ll Ba. This
is first of all more legible than anri BV, and secondly more convenient,
since it only involves inescapable bases. The following lemma records the
basic properties of inescapable bases we will need later.

Lemma 1.1 Let B;, 1 <1 < m, be a finite family of inescapable bases and
put B = | [i~, B;. Then the following hold.

a) B ¥ B; for1<i<m.
¢) If w € Bj N BW,, for some j, 1 < j <m, then w € B.

Proof. Part a) is obvious. We prove b). Without loss of generality we
may assume m = 2. To obtain a contradiction, let d € B and assume
d ¢ By U By. By definition B C B1W,, N BoW,,, so there are b € By, ¢ € By
and w,v € W, \ {0} such that d = bw = cv. It follows that w = za; and
v = ya; for some i, 1 < ¢ < n, and hence z = bx = cy € B1W,, N BoW,,.
But z < d which contradicts the assumption that B is the inescapable basis
of BiW,, N BoW,,. To prove ¢) we may again assume m = 2, and we lose
nothing by setting j = 1. Supposing w ¢ B, we find b € B and ) #z € W,
with w = bz. In particular b < w. But b < w € By implies b ¢ B;W,,, which
in turn contradicts b € B C B1W,, N BoW,,. The proof of the lemma is now
complete.

Sometimes it is useful to think of X,.W,, as the graph with vertex set V =
X, Wy, and edge set E = { (u,ua;)|u € V, 1 <i < n} (see Section 1.5 for
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definitions concerning graphs). Figure 1 below indicates this graph which
in fact is a forest.

XAa xaa, Xaa, . Xaa, Xa8, Xaa Xaa X3a, Xaa, Xaa, Xaa, Xaa

FIGURE 1: THE GRAPH ASSOCIATED WITH X, W,

Observe that each vertex v is in a unique connected component which in
turn corresponds to a unique element z; of X, and that there is a unique
reduced path, i.e. a path without backtracking, joining z; to v. Therefore
we may as well identify v with this path. Taking this point of view, an
inescapable basis B is identified with the subgraph consisting of all those
paths corresponding to the vertices of B. It is now clear that there is a bijec-
tion between inescapable bases and those subgraphs which have precisely r
connected components each of which contains a unique z; € X, of valency n
and all other vertices have valency n+ 1 or 1. In Section 1.5 we will further
explore this point of view.

1.3 GROUPS OF MAXIMAL INESCAPABLE ISOMORPHISMS

Recall the convention that maps will be written on the right of their argu-
ment and mostly as exponents. Let U and V' be inescapable subspaces of
X, W,. A bijection ¢ : U — V is an inescapable isomorphism (of X, W, ) if

(uw)? = u®w holds for all u € U,w € W,,. (1.1)

In particular, v < u' implies u® < /%, where u,u’ € U. This shows im-
mediately that the restriction of ¢ to the inescapable basis of U is a bi-
jection By — By. Conversely, for a given bijection ¢ : B — C be-
tween inescapable bases B and C there is a unique inescapable isomorphism
¢ : BW,, — CW,, whose restriction to B is ¢; simply (bw)? = b*w, b € B,
w € W,.

Let ¢; : Uy — V;, ¢+ = 1,2, be inescapable isomorphisms and assume U C
Ui. Then ¢; is called an extension of ¢o if the restriction of ¢; to Us
equals ¢2. Note that for every inescapable subspace U which is contained
in Uy, U is an inescapable subspace and contained in V;. An inescapable
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isomorphism is called mazimal if it has no proper extension. The following
result is Lemma 1 in [35] of which we reproduce a proof for the sake of
completeness.

Lemma 1.2 Every inescapable isomorphism has a unique mazimalisation.

Proof. Let ¢ : U — V be an inescapable isomorphism of X,W,,. Define
U™ to be the set of all z € X, W,, for which there exists y € X, W,, so that
(zw)?® = yw for all those w € W,, with zw € U. Then U* is an inescapable
subspace because z € U* clearly implies zv € U* for all v € W,,, whence
U*W, Cc U*, and for all v € X, W,, there is w € W,, with vw € U C U*.
For z € U* define ¢* by 2%" = y, where y is such that (zw)? = yw for all
w € Wy with zw € U. It is clear from the definition that ¢* extends ¢.
We proceed to show that ¢* is an inescapable isomorphism. To this end
let z € U*, v € W,, and suppose 2" = y. Then, for all w € W,, with
zow € U, (zvw)? = yvw, whence, by definition of ¢*, (zv)?" = yv = 2% 0.
Furthermore, 2%" = 2/%" = y with 2,2’ € U* implies (zw)? = (2'w)? = yw
for all w € W,, with zw, 2w € U, and hence zw = z'w, as ¢ is a bijection.
Thus z = 2’ and ¢* is a bijection U* — U*?". Since U*?" > V, U*?*
is an inescapable subspace. So ¢* is an inescapable isomorphism. Suppose
now that ¢ : U’ — V' is an inescapable isomorphism extending ¢. Then
(uw)¥ = (uw)? = u¥w for all u € U', w € W,, with uw € U, so u € U*.
Moreover, u?* = u¥, by definition of ¢*, and hence ¢* extends . Thus ¢*
is the unique maximalisation of ¢ and the lemma is proved.

This enables us to define a group structure on the set of maximal inescapable
isomorphisms of X,.W,, as follows. Let ¢;, ¢ = 1,2, be as above and put
S=ViNUy, R= 8% and T = S%. Then it is readily checked that the
composition of the restriction of ¢ to R with the restriction of ¢ to S is an
inescapable isomorphism x : R — T', and we define ¢; ¢2 to be the (unique)
maximalisation of .

From now on G, ; denotes the group of maximal inescapable isomorphisms
of X, W,. It follows from Section 1.2 that the set of maximal inescapable
isomorphisms between finitely based inescapable subspaces forms a subgroup
of G, » which hitherto will be denote by G, .

Convention. We agree now to call inescapable bases for short bases but
warn readers that these bases do not share the properties usually expected
of bases such as having uniquely determined cardinality etc. However, they
are bases in the universal algebra setting of Higman’s point of view, cf. [24].
We shall also always identify X7 W,, with W), via z;w — w.

10



CHAPTER 1

1.4 SYMBOLS

In this section we describe one way of representing inescapable isomor-
phisms. Another way is described in Section 1.5. The following approach
is already contained implicitly in the work of Thompson [40] and takes the
form it is presented here via the works of Higman [24] and Scott [35].

Let us define a symbol to be a scheme of the form

by by -+ b
g1 g2 - s (1.2)
Ccl Co ces Gy

where the g; are elements of G, 1 and {b1,bo,...,bs} and {ci,¢c,...,¢5} are

finite bases of X, W,,, say B and C, respectively.

Let T be the symbol (1.2). Then B and C are called the top row and bottom
row of T, respectively, which are denoted by top(T") respectively bot(T"); thus
top(I') = {b1,b2,...,bs} and bot(I') = {c1,c2,...,¢c5}. Sometimes we call
the g; middle row entries of I'. Note, that although the rows of the symbol I
appear to be ordered, top(I') and bot(I') are only defined to be sets. What
follows will make clear that the order does not play any role apart from
appearing in print. The symbol I" defines the inescapable isomorphism

BW, — CW,
biw > ¢;(w)Y%, whenever w9 is defined, w € W,

the maximalisation of which we define to be the element ¢ € G,, , with symbol
T.

We also say that ¢ € G, , has the symbol A if A is a symbol defining ¢.
Furthermore, for 7 € {1,2,...,n},

b;
gi
Ci

is called a column of the symbol (1.2), and we say that ¢ € Gy, has the
column C or C is a column of ¢, if ¢ has a symbol A so that C is a column of
A. It follows directly from the definition, that the order in which the columns
of a symbol A appear in print does not alter the inescapable isomorphism
defined by A, so it is perfectly sensible to treat symbols as finite sets of
columns and we will do this from time to time. This is why we write C € A to
denote that C is a column of A and top(C) and bot(C) for the top respectively
bottom row entry of the column C. The column C is called trivial if it has
a trivial middle row entry and top(C) = bot(C). Observe that a symbol
defines the trivial element of G,, , if and only if all its columns are trivial.

11
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A more precise notion is that of an E-symbol where E is a subgroup of G, 1,
i.e., all the middle row entries are elements of £. This notion will play an
important role from Chapter 3 onwards. Note that G}, consists precisely
of those elements which have a 1-symbol (1 denotes the trivial group). This
follows from Section 1.2. We also remark that G, , embeds in G, ; for all
n,r € IN, showing that g; € G, 1 in the definition of a symbol is no serious
restriction. For, let B be a finite basis of W), of cardinality at least r, say
{b1,...,b,} C B, and let C be a basis of X, W,,. Then by replacing z; by
b; for 1 < 4 < r in every element of C we obtain C' C W, and moreover
C =C"U(B\{bi,...,b}) is a basis of W,,. Finally, if ¢ : CW,, — DW,,
is an inescapable isomorphism of X, W,, define qAS : C’Wn — ﬁWn as the
identity on B\{b,...,b,} and as the obvious map C'W,, — D'W,, induced
by ¢. It is now straightforward to check that ¢ — qAS is an embedding of
Gn,r into Gy 1. Note, that the image of G, under this embedding lies in
Gn.

Suppose now T is given by (1.2) and g; has the symbol

Ur U2 Ut
hl h2 - ht
Ul 11)2 .. /l)t

Then it is straightforward to verify that I' and the symbol

by -+ b1 biur -+ biug biyr - by
A = g1 P gi—l hl PP ht gi-l—l e gs
€1 - CG-1 GU1 -t GUt Ciyl - Cg

define the same maximal inescapable isomorphism. Recall that, by the con-
vention at the end of Section 1.3, X1W, is identified with W,, which is
crucial for A to be a symbol according to the definition above. We call A
an ezpansion of I at the column

b;
9 ;
ci

if t = n then A is called a simple expansion of T

b;
(at | g |)-
ci

More generally, we say that the symbol A is an expansion of the symbol 3 if
there are symbols Ay = %, Aq,..., A, = A and columns C; € A; such that
A;41 is an expansion of A; at C; for 0 < ¢ < r — 1. If the symbol A is an
expansion of the symbol ¥ we write A > 3 or ¥ < A. As it will be clear

12
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from the context whether we talk about symbols or bases, there should be no
confusion caused by the multiple use of <. For even more clarity, bases will
usually be denoted by upper case roman letters and symbols by upper case
greek letters. The following easy lemma is Lemma 5 in [35] and it relates
symbols to the group structure of G, .

Lemma 1.3 If
ul DR us Ul ... 'l)s
'=1 g1 -+ gs and A= hy --- hg
’Ul s ’l}s wl LR ws

are symbols for the inescapable isomorphisms ¢ and 1, respectively, then

ul ... us
glhl Ut gshs
wl ... ws

is a symbol for ¢1p.

Let us also record the next result (see [35] Lemma 4) which says that a
column for ¢ € G, , is already determined by its top row entry. Note that
a similar statement holds with bottom row entry instead of top row entry;
simply replace ¢ by ¢~

Lemma 1.4 If

b b
T and Y
c d

are both columns of g € Gy, then x =1y and ¢ = d.

Let T be the symbol (1.2). Then I'"! denotes the symbol

Cc1 [6)) e Cs
R R A
by by .- b,

and moreover, if ¢ is the element defined by I', then ¢~! is the element
defined by I' !, by Lemma 1.3.

For symbols T" and A for ¢ respectively 9 we say that the combination T A
exists if bot(I') = top(A). In this case T'A is the symbol for ¢ given by
Lemma 1.3. Similarly, we say that the combination I'y - - - ', of the symbols
I'y,..., Iy exists if bot(T'x) = top(Tk41) for 1 <k <m — 1 and we identify

13
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this combination with the symbol given by repeated application of Lemma
1.3.

Let us focus for a moment on the groups Gy, ;. We have already noted that
¢ € Gpr has a 1-symbol, A say. Since the identity element of G, 1 has the
1-symbol

al .. an
T | ,
al .. an

it follows that for each column C € A, the simple expansion of A at C exists.
These observations suffice to obtain the following lemma which we will use
freely throughout this work.

Lemma 1.5 Let ¢,9 € Gy, and suppose ¢ has the 1-symbol A, then the
following hold.

a) Every expansion T’ of A is again a 1-symbol for ¢ and top(T') > top(A)
as well as bot(I') = bot(A).

b) For the finite basis B the following hold

(i) If B = top(A) then ¢ has a 1-symbol T with top(I") = B.
(ii) If B = bot(A) then ¢ has a 1-symbol T' with bot(I') = B

¢) If ¢ has the 1-symbol T, then there are expansions A and T of A
respectively I’ so that the combination AL exists. Moreover, A and T’
can be constructed effectively.

As an immediate consequence of Lemma 1.3 and 1.5 ¢) we see that 1-symbols
can be used to compute effectively with elements of the groups Gy, in the
sense that for any two elements ¢ and % of G, there are 1-symbols I'
respectively A such that the combination I'A exists, i.e., I'A is a 1-symbol
for ¢1p. Since a 1-symbol defines the identity element if and only if it has only
trivial columns, we see that the groups G, have solvable word problem,
i.e., it is effectively decidable whether a given element is trivial.

1.5 TREE DIAGRAMS

Here we describe an alternative way of representing elements of the group
Gp,r, namely tree diagrams. This approach can also be found in [10]. Since
the tree diagrams get quite complex for general n and r, we restrict ourselves
to the group Go,; and leave it to the reader to draw examples for the other
groups. The main purpose of this section is to encourage the reader to draw

14
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tree diagrams whenever he fears to get lost in the symbol notation. Unfor-
tunately, the symbol notation does not give such a good intuitive picture of
inescapable isomorphisms as tree diagrams but it is mathematically more
rigorous which is why we decided to use it for preference in the following
chapters.

For our purpose a graph is a set V, whose elements are called wvertices,
together with a set E of two-element subsets of V. The elements of E are
called edges. We say that v € V and e € E are incident if v € e. A path p
in a graph is a sequence vy, v1,...,v, of vertices such that {v;,v;11} is an
edge for 0 < ¢ < r — 1; this path is said to join vy and v,. The path p is
called trivial if r = 0 and closed if v9 = v,. Furthermore, the path p is said
to have a backtracking, if v; = v;;o for some i. A graph is called connected
if any two vertices can be joined by a path. Let us mention that there are
more complex definitions of a graph, for instance to include multiple edges
incident with the same two vertices or loops. Since we are only concerned
with forests, we can stick to the simple definition above.

As usual, a graph is called a tree if it is connected and has no non-trivial
closed path without backtracking. And a graph is a forest if each connected
component is a tree. Let us define a finite rooted binary tree to be a finite tree
with precisely one vertex of valency 2, the root, and all other vertices having
valency 3 or 1. The vertices of valency 1 are called leaves. (For the general
case one would define finite n-ary r-forests, i.e., graphs with r connected
components which in turn are finite n-ary rooted trees.) As indicated at
the end of Section 1.2, the set of finite bases of W, is in bijection with the
set of finite rooted binary trees. Let us agree to draw the root of the tree
at the top of the picture of (the geometric realisation of) a rooted binary
tree and that for every vertex v the vertices va; and vao are ‘southwest’
respectively ‘southeast’ of v, where ‘north’ is at the top of the page, as
usual. This convention allows us to suppress the labels of the vertices in the
diagrams. Figure 2, for example, shows the tree corresponding to the basis
{alalal, a1a10a2,0102, 0201, (I,Qag}.

Remark. In the general case, we first order the elements of the alphabet
A, and of X, according to their subscripts and then order each basis of
X, Wy, lexicographically. We then draw tree diagrams so that this order
corresponds to the order of the leaves read from left to right.

AN

FIGURE 2

Recall that a finitely based inescapable isomorphism ¢ : § — T is uniquely
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determined by its restriction to Bg and, what is more, Bg = By, cf. Sec-
tion 1.3. Thus we can describe ¢ by drawing the two trees corresponding to
Bg and Br with the leaves labelled in such a way that b € Bg and ¢ € Br
have the same label if and only if b* = ¢ and an arrow indicating the range
and the domain. We call such an arrangement a tree diagram. For example,
the element defined by the symbol

ap G201 G20a2
A= 1 1 1
ai1ag a1a1 a9

is the same as the element defined by the tree diagram in Fig. 3.

FIGURE 3

If Bg = By then ¢ induces a permutation of Bg. In this case we sometimes
use a tree diagram with only one tree and arrows indicating the action of ¢.
Such an example is given in Fig. 4 for the element defined by the symbol

aiay aiaz a2
A= 1 1 1
aiaz aiay a2

T
- -

FIiGURrE 4
Expansions of symbols have an obvious analogue in terms of tree diagrams.
Let us omit the details and refer to Fig. 5 instead, which illustrates the

computation of the product of the element defined by the tree diagram in
Fig. 4 with the element defined by the tree diagram in Fig. 3.
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12 2 3 2

4 2 13 4 1
1 12
= —
4
1 23 4 3
2 1

FIGURE 5: MULTIPLYING TREE DIAGRAMS

We conclude this section with an example indicating how we use labelled tree
diagrams to represent elements that are given by symbols with non-trivial
middle row entries. Let g1, g2, g3 be elements of Go 1. Then Fig. 6 shows the
labelled tree-diagram which defines the same element as the symbol

a1 asa1 a%al a%
g1 92 g3 1
ai1aga1 a% a9 a1a9
P
1 3
93
2 2
9;
3 4 1 4
%
FIGURE 6
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SUBGROUPS: PART 1

In this chapter we present a selection of known results about groups of
finitely based maximal inescapable isomorphisms. The main focus is on
simple groups and what kind of subgroups they may have. In Sections 2.3
and 2.5, however, we obtain at least some unpublished, although maybe
well known, results. The final section consists of a proof that each G, is
generated by two elements. This appears to be new as well.

2.1 SOME ‘CLASSICAL’ SUBGROUPS AND SIMPLICITY

In this section we define the groups F,; and T}, which, for n = 2, r = 1,
were also studied by Thompson [40]. Their generalisations were introduced
by Brown [7]. Since we only work inside the groups Gy, in this section,
‘symbol’” always means ‘1-symbol’.

Recall that we can equip each finite basis with the lexicographic order as
in the remark in Section 1.5, and we write u < v if u comes before v in a
lexicon. This convention rules only in this section where the ‘prefix order’
of Section 1.2 is not used. The first subgroup that comes to mind with
this definition is the group F,, of order preserving elements of Gy, .. More
precisely, g € Fy, , if and only if for all u, v’ in the domain of g, u < ' implies
w9 < u'9. Equivalently, if A is a symbol for g, then the orders of the columns
induced by the orders of the top respectively bottom row are the same. It
is straightforward to check that this definition is independent of the chosen
symbol, so F, , is really a subgroup. Moreover, F,, , is torsion-free, as can
be verified directly. But it also follows from Proposition 4.5, by noting that
an element g of F, , with a symbol A satisfying top(A) = bot(A) must be
trivial.

Let us advance a little and define the group T, , as the set of all elements
of Gy, that preserve the order cyclically. By this we mean that, whenever

ul " us
T |
Ul " US
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is a symbol for g € Ty, » with u; < up < -+ < ug, then thereis j € {1,...,s}
such that v; < w41 <--- <wg <w; <--- <wj_1. One can check that this
holds for all symbols for g if it holds for one symbol for g, so T;, , is indeed
a subgroup. It is clear that F, , C T, , C Gy

Remark. The group Fy; is especially interesting because it appears natu-
rally in various branches of mathematics, e.g. [13],[21]. It has particularly at-
tracted attention in connection with the Day problem concerning amenable
groups (for amenable groups see, for example, [11],[12],[41]). We do not
want to go into details here, but like to mention that it is not known if F5 {
is amenable. Both, an affirmative and a negative answer, would be interest-
ing. If it was amenable, then it would be a finitely presented not elementary
amenable group, otherwise it would be a finitely presented non amenable
group without non-abelian free subgroups, cf. [10]. However, it seems to be
very difficult to decide if F5 ; is amenable. All the known criteria do not ap-
ply. At this point we should mention that a finitely presented amenable but
not elementary amenable group was constructed recently by Grigorchuk in
[19], as an HNN-extension of the group G,,, where w = 012012 -- and p = 2
(see Section 4.3 for the definition). Apart from the groups Hy, and Hy,'
of Section 4.4 this is the only finitely presented group having a Grigorchuk
group as a subgroup known (to us), and we would like to point out that it
is not clear if similar methods work for groups G, where «' is an arbitrary
recursively enumerable sequence. The reason is that the proof uses an ex-
plicit presentation of the group G, whereas no explicit presentations are
known in the general case. Let us also remark that the group 75 appears
surprisingly in Teichmiiller Theory as the universal Ptolémée group, cf. [26].

We proceed with the description of another important subgroup of G, ;; its
commutator subgroup. It is plain that every element of G, , can be written
as a product of an order preserving element and a permutational element,
i.e., an element having a symbol A with top(A) = bot(A). Such a symbol
is called flat. An element is said to be even if its associated permutational
element has a flat symbol inducing an even permutation in its top row, i.e.,
the permutation can be written as product of an even number of 2-cycles.
We note that for even n every element is even which follows basically from
Fig. 7. This figure also indicates that the definition of an even element is
independent of the choice of symbol if n is odd.

FIGURE 7
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It is not difficult to check that the set of even elements is actually a subgroup
of Gy, ,, and the following was shown in [24].

Lemma 2.1 The commutator subgroup of Gy, coincides with the set of
even elements, in particular, its index is the highest common divisor of 2
and n — 1.

The commutator subgroups of F, . and T), ,, as well as the second derived
subgroup of the latter, are described in detail in [7] and we do not give these
results here. We conclude this section with a result proved by Thompson
for Go,1, by Higman for Gy, ,, and for T3, , by Brown ([40],[24],[7]). Before
we state that result, let us mention that Fr’m is also a simple group, but not
finitely generated. In contrast, F, , is finitely presented.

Theorem 2.2 For all integersn > 2 and r > 1, the commutator subgroup of
Gn,r and the second derived subgroup of Ty, are finitely presented (infinite)
simple groups.

2.2 THOMPSON’S LEMMA

The result of this section could be considered the key to the constructions
of more finitely presented simple groups in Chapter 4. It was proved by
Thompson [40] for n = 2, r = 1. Scott adapted the proof for general n and
r = 1 in [35]. We give a somewhat sketchy proof which we hope is more
transparent than the proof in [35], although it follows the same lines. From
now on ‘<’ denotes again the ‘prefix order’ defined in Section 1.2.

Lemma 2.3 Every subgroup H of G, , which contains the commutator sub-
group of Gy has a simple commutator subgroup, for all n,r € IN, n > 2.

Proof. To begin with let v be a non-trivial element of G,, ;. Then there are
w,v € X, W, such that w” = v # w and {w,v} is an independent set. To
see this assume that w” = v # w but v < w, then the basis of the domain of
v contains w’ > v with w’ # w, and hence w" cannot be <-comparable with
v, by the definition of inescapable isomorphisms. So w' and w' satisfy the
assumptions. If on the other hand w < v, then apply the above argument
to ! with the roles of v and w interchanged.

Only in this proof we use infinite symbols and columns of infinite symbols
for elements of G, . They can be defined in the same manner as symbols
with ‘bases’ replacing ‘finite bases’. Having only finitely many pages we
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certainly need to treat them as collections of columns. So suppose v has an
infinite symbol consisting of the columns

w w;
1 |and | 1 |, i€l
v (3

where w and v satisfy the conditions above and I is some index set. Let
be the element defined by the tree-diagram in Fig. 8 and define « to be the
element with an infinite symbol having the columns

w w;
B and 1 |,1€l.
w w;

Then v lav has the columns

v U;
B and 1 |, 1€l
v V;

Note that o and v~'av are actually different elements of Gr,' because
they induce even permutations. Thus, a~'vlav is a non-trivial element in
NNG,,', where N is the normal closure of v. Using the fact that G, ,’ is a
simple group, we have shown that every non-trivial normal subgroup N of
H contains G, .

FIGURE 8

Suppose now that H satisfies the hypothesis of the lemma and let N be
a non-trivial normal subgroup of H. In the next paragraph we show that
H/N is abelian, i.e., H' C N. This completes the proof by the following
argument. Since H' is a group satisfying the hypotheses of the lemma (G, ;'
is non-abelian and simple), each of its non-trivial normal subgroups contains
H". But H" is normal in H, and therefore equal to H'.

Take two elements, ¢ and x say, in H. To prove that they commute modulo
N, we may, by the above arguments, multiply them with elements of G,, ;'
and show that these altered elements commute. Let us go back to the
situation of the first paragraph of the proof. There is certainly an element
v in G, ," with v = w, so w7 = w. Hence we can assume that ¢ and
x both have a fixed point. Suppose yX = y. Finally, one can now find an
element § € G, ,' such that 6 1¢§ acts non-trivial on elements in yW,, only.
It follows that 6~ '¢¢ and x commute, and the proof is complete.
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2.3 OBVIOUS SUBGROUPS OF G,

For a start, let us state explicitly that every finite group is a subgroup of any
Gp,r; simply let it act as a permutation group on a sufficiently large finite
basis. Recall that a group is called locally finite if every finitely generated
subgroup is finite. The following lemma was already established by Higman
in [24]. It is proved roughly like this: if the finite group K acts regularly on
the independent set S1, and if Sy is the independent set obtained from Sj_1
by simply expanding each element of S;_1, then K acts on Sy in the same
manner as in its diagonal action on S¥, the direct product of k copies of S;
(S¥ is not inside X, W, but Sy is). So if K is a subgroup of index k in the
group H, then we can let H act regularly on Sy, so that the induced action
of K viewed as a subgroup of H is precisely that coming from the original
action of K on S;. Iterating this process, each direct limit of countably
many finite groups can be embedded in G, ;. But a countable locally finite
group is exactly such a direct limit.

Lemma 2.4 Every countable locally finite group can be embedded in Gy,
forallm >2,r>1.

The proof of the next lemma could safely be left as an exercise but the
result also follows from the more general Corollary 3.2, by noting that G, ,
is 1-expansible.

Lemma 2.5 The class of subgroups of Gy, is closed under countable re-
stricted direct products (see Section 1.1 for the definition) and finite exten-
sions.

There are also numerous embeddings between the groups G, , for different
choices of n and r, and we only mention a few. For example, the stabiliser of
z1 in Gy, is clearly isomorphic to Gy, 1 for 7 > 2. We have already shown
that G, is embeddable in G, 1 (Section 1.4). Let us now show that G,
can be embedded in Gg; for all n > 3. Define b1 = agal, 0<i<n—2,
and b, = ag_l. Then {b; |1 < i < n} is a basis of Wa; denote it by B. For
w € W, define w* € Wy as the element obtained from w by replacing each
letter a; by b; for 1 < i < n. It follows that every basis C of W,, corresponds
to a basis C* in Wy under this identification, as an easy induction on the
number of simple expansions needed to get from {ai,...,a,} to C shows.
So given an element g of Gy, with symbol A say, we can replace all its top
and bottom row entries by their *-images to obtain a symbol A* defining
an element g* of G;. It is straightforward to check that this defines an
embedding. So Gg,1, although it might look like the ‘smallest’ group among
the G, , in some sense, contains all the others as subgroups.
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There are also some isomorphisms between the groups G, ,. For instance,
it is not so difficult to see that G, , is isomorphic to Gy, » whenever r and
r’ are congruent modulo n — 1 (see [24]). In [24] Higman proved that Gy, ,
is not isomorphic to Gy, if n # n’. However, the isomorphism problem
for the groups Gy is still open; e.g., it is not known if G4o,1 and G4o,7 are
isomorphic.

The remainder of this section is concerned with the Houghton groups H,,
which were introduced by Houghton in [25]. See also [27], [42]. We learned
about this group in conversations with J. Harlander and from the paper [7]
by Brown which caught our attention with the simplicity results quoted in
the first section of this chapter. The main purpose of that paper, however,
was to show in a unified way that the groups Fy, ;, Ty s, Ty ., G, and Gn,'
are all of type F Py, and finitely presented. In fact, that paper also shows
this for some other subgroups of G, which we do not want to define here.
That F),, is of type F Py, was first shown by Brown and Geoghegan in [8].
A group G is said to be of type F'P, (resp. FPy,) if the ZG-module Z has
a projective resolution which is finitely generated in dimensions < n (resp.
in all dimensions), cf. [6]. Brown shows in [7] that the Houghton group H,,
is of type F'P,,_1 but not FF,, and finitely presented if m > 3.

Before giving some additional remarks, we define the Houghton groups and
show that they are embeddable in G, ;. This seems to be new. Let m > 1
be an integer, and define S = IN x {1,...,m}. Think of S as the disjoint
union of m copies of IN, each arranged along a ray emanating from the
origin in the plane (see Fig. 9). The Houghton group H,, is the group of
all permutations of S which are eventually translations on each ray. More
precisely, if h € H,,, then there are integers I;, 1 < ¢ < m, such that

(k, )" = (k + 1;,4) (2.1)

for all sufficiently large k£ € IN and all admissible i. Note that > ;" [; must
be zero, and that H,, contains the finitary symmetric group on the set S
for every m > 1; that is all permutations fixing all but finitely many s € S.
For m > 3, Hy, is generated by

(k,i) — (k — 1,4), if k> 2
(kyi+1)— (k+1,6+1), ifk>?2

(1,4) — (1,i +1)

(k, ) — (k. ), if j ¢ {i,i+1}

for 1 <4 < m—1 (see Fig. 9). For [hy!, h1] is the transposition ((1,2), (2,2))
which together with all its conjugates under the h; generates the finitary
symmetric group F' on S, and it is not difficult to see that F' and the h;
generate every permutation of S satisfying (2.1).

hi =

Proposition 2.6 For all integers m > 1, the Houghton group H,, is a
subgroup of any Gy ;.
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(L1

FIGURE 9

Proof. For simplicity we prove this for G, only. The general case is
similar. It is clear that H; is isomorphic to the finitary symmetric group
on a countable set. Let B be a countable basis of W5 and observe that the
finitary symmetric group on B is in fact a subgroup of G5 ;. This proves
the case m = 1. It is also not difficult to see that Hs is isomorphic to the
semidirect product of the finitary symmetric group on Z with the infinite
cyclic group generated by the ‘shift’ s : z — z+1, z € Z. Now let B be the
basis {a%as,aba; |i € IN} whose lexicographic order is order-isomorphic to
that of Z in its natural order, and let a be the element defined by the tree
diagram in Fig. 10. Then « induces the shift s. Let K C G21 be the finitary
symmetric group on B, and put H = (K, ). Then K is normal in H, and
it is clear that restricting the action of H to B induces a homomorphism
from H onto Hy. Suppose ka! € H lies in the kernel of this homomorphism,
where k£ € K. Since k affects only finitely many elements of B, we must
have ¢ = 0, which in turn implies £ = 1. The case m = 2 is now complete.

FiGURE 10

Now let m > 3, and define

¢ : S— Wy
(1,7) — a%fla’iag .

24



CHAPTER 2

Observe that ¢ is injective and, moreover, S U {a}]'} is a basis (see Fig. 11).
Let g1 € G2,1 be the element with tree diagram

/@\ !
i 2 3 4
3

and, for 2 < 7 < m — 1, define g; € G2, to be the element whose only
non-trivial column is

2

i—1
ay

91
a;_l
It is straightforward to check that ¢g;¢—' = h; for 1 < i < m—1. Since all g;
fix a* and ¢ is a bijection between S and S?, we get that G = (g1,...,gm 1)
is a subgroup of G isomorphic to H,, (observe that an element element
of G is trivial if and only if it fixes S® pointwise). The proof is complete.

FiGure 11

2.4 RESTRICTIONS ON SUBGROUPS

This section is about groups that cannot be embedded in any group G,
and it therefore motivates and justifies the search for more finitely presented
simple groups. The first serious restriction on subgroups of the groups G, ,
was encountered by Higman [24]. Let us recall that the rank of an abelian
group is the minimal integer r such that every finitely generated subgroup
is generated by r elements.

Theorem 2.7 Letn > 2 andr > 1 be integers. Let A C Gy, be torsion-free
abelian group of finite rank. Then A is free and its centraliser in G, , has
finite index in its normaliser in Gy ,. Consequently, Gy, has no subgroup
isomorphic to SL3(Z).

Another, rather strong, restriction on torsion-free subgroups is implicit in
the next theorem which was also proved by Higman [24]. Recall that a root
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of an element g of a group G is an element h € G such that h' = g for some
t € IN.

Theorem 2.8 An element g of Gpn, of infinite order does not have arbi-

trarily large roots, i.e., there is a bound on the t for which there may exist
h € Gy, with k' = g.

As a consequence of this the additive group of the rationals is not embed-
dable in any Gj,. Also certain Baumslag-Solitar groups BS(m,l) with
I # m are excluded as subgroups by this theorem. The group BS(l,m) is
generated by two elements a and b subject to the single defining relation
b~ lalb = a™. Suppose that | = mk for some integer k. Then, if we write

a; = a", i € Z we have a! = a™; and thus

m _  mk _ _mkZ _ / m\kt
ag' = ai” =ay” = (a;")",

which implies that ¢™ has arbitrarily large roots.

The last result can be contrasted with the following observation.

Lemma 2.9 In G, ., every element of finite order has n'-th roots for all
i >0.

Proof. Tt certainly suffices to show that every element g of finite order has
an n-th root. It is shown in Proposition 4.5 that g has a symbol A with
top(A) = bot(A), so that g induces a permutation of top(A). Each cycle
of this permutation corresponds to n cycles in top(I') when I' is the symbol
obtained from A by simply expanding all columns. So there is an element
h in the symmetric group on top(I') whose n-th power induces exactly the
same cycles in top(I') as g, i.e., h™ = g, as required.

In Section 4.2 we establish another restrictive result (Theorem 4.8). It is
about torsion subgroups and gives as a special case the following.

Theorem 2.10 Ewvery torsion subgroup of Gy is locally finite.

Together with Theorem 2.4 this gives a complete characterisation of torsion
subgroups of G, ;; they are precisely the countable locally finite groups.

2.5 PiNne-PonG AND SsOME FREE ProDuUCTS

In [37] Scott gives an example of a non-abelian free subgroup of G2 1 due to
Higman. In this section we prove a probably well known Ping-Pong Lemma
and give some examples of subgroups of G, ; to which it applies.
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Lemma 2.11 (Ping-Pong Lemma) Let G be a group acting faithfully on a
set X by permutations. Let H and K be subgroups of order at least three of
G, and assume Xg and X are disjoint non-empty subsets of X satisfying
the following condition.

(PP) If h and k are non-trivial elements of H respectively K, then X% C
Xy and X}CI Cc Xk.

Then the subgroup of G generated by H and K is isomorphic to the free
product of H with K.

Proof. By the normal form theorem for free products (see for example [28])
we only have to show that no word of the form hqkq --- h,k,, defines the
trivial element, where 1 # h; € H, 1 # k; € K, with the only possible
exceptions being h; and k, but not both if n = 1. First suppose that
hi # 1 and k, = 1. Then condition (PP) implies that z"1*1"» ¢ Xy for
all x € Xk, whence hiky - -- hy, cannot be trivial. A similar argument (this
time with © € Xpy) applies if hy = 1 and k, # 1. If, on the other hand,
h1 and ky, are both non-trivial, then we can conjugate by some h € H with
h # hi (JH| > 2) to get to the first case. The case hy =k, = 1 is reduced
to the first case again by conjugation, and the lemma is proved.

Corollary 2.12 The group Gp, has non-abelian free subgroups of every
countable rank for everyn > 2 and r > 1.

Proof. We restrict ourselves to G'a,1, the general case being similar. Since
the free group of rank two contains free groups of every countable rank, it
suffices to find two elements a, b € G21 which freely generate a free subgroup.
Define a and b by the tree diagrams in Fig. 12. To have a permutation action
of Ga,1 we consider its induced action on the set of ends X of the infinite
rooted binary tree, i.e., all infinite sequences with values in {a1, a2}. Then we
apply the Ping-Pong Lemma with G = G2,1, H = (a), K = (b), Xu = a2X,
and X K = alX .
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}—a>

1 4
2 3
3 4 1 2
4 }_b> 1
3 2
1 2 3 4
FIGURE 12

Remark. Observe that a and b are both cyclically order preserving so that,
in fact, 15 1 has free subgroups. This should be compared with Corollary 4.9
of [10] saying that F), , has no non-abelian free subgroups. Note also that
these generators are a little easier than those in [37].

Corollary 2.13 Every free product of finitely many finite groups is embed-
dable in G, for any choice of n > 2 and r > 1.

Proof. We show that for every finite group F, the free product of F' with
the infinite cyclic group generated by the element a defined in Fig. 12 is
embeddable in G'9 ;. This suffices, for we can take F' to be the direct product
of the given finite groups, F1, ..., F; say, and it then follows from the normal
form theorem for free products that the subgroup (F* |1 < i < t) of F x(a)
is isomorphic to F} - - - x F;. Let s be the order of ' and let B be the basis
{atay |0 <i < s—2}U{a"'}. Choose a bijection between B and F so that
ag corresponds to the identity and consider the group K of permutations of
B which is induced by the right regular representation of F' on itself and
this bijection. Now the Ping-Pong Lemma applies with G = Go1, H = (a),
K, and X, Xy and Xg as in the proof of Corollary 2.12.

Remark. This result follows in a more indirect way from the fact that every
free product of finitely many finite groups has a free subgroup of finite index
(see for example [14]) together with Corollary 2.12 and Lemma 2.5

Corollary 2.14 The free product of an infinite cyclic group with the direct
product of finitely many finite and finitely generated free abelian groups is

embeddable in G, for any choice of n > 2 and r > 1.

Proof. Let Hy,...,H, be a finite family of finitely generated free abelian
groups and finite groups of order at least three. Let K; = (z;) be infinite
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cyclic groups for 1 <4 < r. Suppose that all these groups act on the same
set X and that for 1 < 4 < r there are subsets Xp,, Xk, of X such that
condition (PP) holds for every pair (H;, K;). Assume in addition that for
every 1, 1 <1 <7, H; and K; both fix U#i(XH]. U XK].) pointwise. Then
we claim that the group M C Sym(X) generated by the H; and z1z9 - - - z,
is isomorphic to (Hy X --- X H;) * Z. It is clear from the assumptions that
[hj,h,z'] = [hj,ki] = [k‘j,kz'] =1forall hy € H,kj e Kjand1 <i#£j <.
So the group H generated by the H; is isomorphic to X]_;H;. Put k =
122 - -z, and K = (k) and let w = hqkq - - - hyk; be a non-trivial word with
h; € H,k; € K. We have to show that w is not the identity. If ¢ = 1 and
either h; or k; are trivial this is obvious. Otherwise w contains some non-
trivial h; which we may assume is h; after possibly conjugating w. Now hy
can be assumed to be a word l; - - - [ with [; € H; and clearly [, # 1 for some
g. Conjuagating w again we may now assume that k; = 1 and h,, contains
some I, € Hy. Now consider X }‘éq. By the hypothesis, only elements of H,
and k must be taken into account to see that X C Xp,. Finally, to see
that such a construction can be done inside G, » use Corollary 2.12 and 2.13
and put such constructions further down in the tree to create space in order
to meet our conditions above on fixed points. Note that the assumption on
the orders of the finite groups is no problem, since we can consider the group
we are looking for as a subgroup of a group satisfying these conditions. This
completes the proof.

2.6 GENERATORS FOR Gy,

For future reference we include here some remarks on generating sets for
the groups Gp, and Gp,’. It was shown by Mason [30] that G,,’ can
be generated by two elements. He assumed that 1 < r < n which is no
restriction, as Gy, , is isomorphic to Gy, ,1n—1 (see Section 2.3). The elements
needed are all defined in Appendix B which can be folded out to be visible
while reading here. This Appendix is also used in Section 4.5, and the
dashed lines in the tree diagrams play a role then, but should be ignored for
the time being. Mason proved that ab and ¢ generate G,,,. We show that
G, can also be generated by two elements. By Lemma 2.1, only for odd n
is there something to prove. Observe, that cbc ! is a single cycle, y say, in
the symmetric group S on {zja;|1 <j <r1<i<n} fixing at most z1a.
So y and & generate S which includes a, and hence (a,b,c) C (a,b,c). Since
d and b commute and have coprime finite orders, (a,b) = (ab). (This is also
true for a in place of 4.) Hence, (ab,c) = Gy, ,, because a is not even, if n is
odd.
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EXPANSIBILITY AND FAKE
EXPANSIBILITY

This chapter lays the ground for the constructions in Chapter 4. In the
first half we record without proofs the main results of [35]. Those are the
definition of F-expansible groups, a presentation for E-expansible groups
and the #-construction. In the second part we introduce fake- F-expansibility
as a generalisation of E-expansibility and then we prove that certain fake-
FE-expansible groups are finitely presented if F is finitely presented.

3.1 EXPANSIBILITY

In [35] Scott introduced the notion of E-expansibility in order to show that
certain subgroups of G, 1 are finitely presented. Let us state an equivalent
definition of E-expansibility.

Let E and H be subgroups of G, with E C H. Then H is called E-
expansible if there exists a generating system Y for H such that, if A is
in Hand h = y; -+ ym with y; € Y for 1 < i < m, then there are F-
symbols I'y,..., [y, for yi1,...,ym, respectively, such that the combination
I’y --- Ty, exists. Thanks to Lemma 1.3, this combination is an E-symbol for
h, in particular, every element of H has an H-symbol. The idea behind this
definition is that all relations which hold in H can be expressed in terms of
E-symbols, and hence H can be investigated by studying F-symbols.

The main result of Scott [35] gives an explicit description of a set of defining
relations for an E-expansible group H, when H contains G, 1. As we are
going to use it in the following chapter, we recall now the main features of
that result whose actual statement comes only in the following section.

As in [35] we denote subgroups of G, ; which contain G, ; by capital script
letters. We consider the following situation: H is a subgroup of G, 1, H =
(Gn,1, H) is the subgroup of G,, ; generated by G, 1 and H.
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For g € Gp,1 define o4 to be the element with symbol

a]. a2 " an
g 1 - 1
al a2 e an

It is easy to see that H* = {0}, |h € H} is a subgroup of G, ; isomorphic
to H (Lemma 7 in [35]). Let us also recall the following lemma which is
Lemma 8 in [35] for which we indicate a tree-diagram proof. We hope that
this is more enlightening than the original proof.

Lemma 3.1 If H is H-ezpansible, then (Gp 1, H*) and H are equal.

Sketch of proof. Let h € H. Thanks to the H-expansibility of #, h has
arbitrarily large H-symbols, for ah can be expressed as a combination of
H-symbols for all @ € G;1. The example in Fig. 13 shows how to prove
h € (Gn,1,H*). Note that a € Gy, 1 and that the element in the second row
of that figure is an element of (G, 1, H*)

mﬁ% ma% 2Q
g %%

FIGURE 13

Since h3 is an inescapable isomorphism, using the argument above, it has an
H-symbol with at least one trivial middle row entry. Assume, for example,
h3 has the tree-diagram in Fig. 14.

FiGure 14

Then h has the tree-diagram in Fig. 15.

[N

311 312

FIGURE 15
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Now, let g and k be the elements defined in Fig. 16 and check that ghk = oy,.
So H* C (Gp,1, H) and our sketch of the proof is complete.

RN

FIGURE 16

Corollary 3.2 If H is H-expansible, then the following hold.

(i) Every H-symbol defines an element of H.

(ii) The class of subgroups of H is closed under restricted direct products
of countable families and finite extensions.

Proof. As can be seen from the proof of the lemma, every H-symbol is the
combination of finitely many conjugates of H-symbols for elements of H*
with a symbol for an element of Gy, ,. This proves (i). Furthermore, from the
proof of the lemma together with (i), we get that for every subgroup U of H,
U* is a subgroup of H. So given a countable family Uy, Us, ... of subgroups
of H, we can “place them below the vertices of an infinite basis” as indicated
in Fig. 17 below. It is clear that this gives a subgroup of G, ; isomorphic
to the direct product of the U;. Since the elements of the restricted direct
product have finite supports, they have H-symbols, and the first part of (ii)
is proved.

FIGURE 17

The second part of (ii) follows from the well known embedding theorem of
Krasner and Kaluznin (see for example [33]), stating that every extension of
a group G by a group H is isomorphic to a subgroup of the standard wreath
product of G with H, cf. Section 1.1. Since the direct and restricted direct
product of a finite family are indistinguishable, the corollary follows from
the first part of (ii) and the fact that the symmetric group of any finite basis
is a subgroup of G, 1.
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3.2 A PRESENTATION FOR EXPANSIBLE GROUPS

In this section we complete the description of the main result of [35], stated
here as Theorem 3.3. A set {1n,...,7ns} of elements of G, ; is said to be
of type s if there is a basis B = {aj,ws,...,ws} such that n; naturally
corresponds to the involution (a1, w;) in SymB, the symmetric group on the
set B.

We now define four sets A, B, C, and D of relations. The relations in B, C,
and D are written in terms of general elements of G, 1 and H*, not just
on elements of a chosen generating set. The elements are considered as
‘shorthand’ notation for the words on the chosen generating set to which
they correspond. Since we have relations A, it does not matter which of the
words a particular element of G, 1 or H* is taken to represent. Usually a
generating set X UY will be used, where X and Y are finite generating sets
for Gy, 1, respectively H*.

Relation-set A. This consists of a fixed set of defining relations of G, 1
and a fixed set of defining relations of H* with respect to the chosen
generating sets.

Relation-set B. Let F' denote the subgroup of G, 1 that fixes all words of
the form a;w, w € Wy,. Then B = {aoy = opa|h € H, a € F}.

Relation-set C. Let § be the element with symbol

a1 az - Gp-1 QapQ1 AapG2 --- GapGp
anai G2 -+ Qap-—1 a1 anG2 **° Gpap

Then C = {50h50h’ = Uh150h5|h, h e H}

Relation-set D. Let h € H and let

U1 S Ug
T=|h - h
U1 Vg

be an H-symbol for op,. Let S = {n9,...,ns} be a set of type s with

corresponding basis {a1,ws, ..., ws} and define 7 and e by the symbols
U1 U9 - Ug aq w9y - Wy
1 1 - 1 and 11 - 1 ,
al w2 ... ws Ul ’l)2 .. US

respectively. Furthermore, let Ry, r s denote the relation

Oh = TORM20hy - -~ NsOh,Ns * - - N2€E. (3.1)
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Then D is the set of relations Rj,r ¢ for all possible choices of sub-
scripts.

Define the set x of relations to be AUBUC U D.

Theorem 3.3 (Scott) Let H be a subgroup of Gn1. If H = (Gpn1,H) is
H-expansible, then the set x of relations is a set of defining relations for
H. Moreover, if H is finitely presented, then AU B U C' is finitely based,
i.e., there is a finite subset of AU B U C which implies all the relations in
AUuBUC.

Before we recall a construction due to Scott for obtaining H-expansible
groups in the next section, we give an example showing how restrictive
expansibility is. Observe that H must be H-expansible if # is H-expansible.

Example. Define H to be the group of order two generated by the element
h defined by the H-symbol

a1a9 a9
h 1 1
a a9 a1a9

Then H is clearly H-expansible, but # is not, for hop has no H-symbol.
This is because every H-symbol for h has a column

o
ho |,
o2
whereas every H-symbol for o, has a column
2k+1
a7

h ;
a%k—kl

for kK > 0. So hop, cannot have an H-symbol which is the combination of
H-symbols for h respectively o,. Observe that o, is indeed an element of
‘H even though Lemma 3.1 does not apply. What is even worse, we cannot
define an element h; such that A has the column
a%’“’l
h1
a%k+1

for some k > 0.
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3.3 THE 6-CONSTRUCTION

Here we describe a method due to Scott to obtain expansible groups, cf.
[35]. In Section 4.2 we prove a general theorem about groups obtained in
this fashion. Recall from Section 1.1 the definition of the permutational
wreath product. It is clear that for groups A, B, and a permutation group
C, each homomorphism ¢ : A — B induces an obvious homomorphism
A1C — B1C.

Now consider the following situation. Let F' be a finitely generated free
group and denote by S, the symmetric group of degree n with its natural
action on {1,2,...,n}. Let F 1S, be the permutational wreath product,
where F' acts on itself via the right regular representation. Suppose we are
given a homomorphism 6 : F — F1S,. Then 6 induces a homomorphism
0, : F1S, — F18,18,, and iterating this process gives the following
commutative diagram of homomorphisms

F % ms, % misas, 5 Fis,18,18,

I m 1 p2 L ;m

S, £ S8, B 8,18,1S8, &

where p; and 7; denote the natural projections. Define 91 = 0p1, ¥ =
001---0;_1p; for i > 2 and let K; be the kernel of ;. Finally put K =
N2, K; and Hy = F/K. The following proposition summarises Lemmas 14,
15, and 17, and Theorem 2 of [35].

Proposition 3.4 Let Hy be defined as above. Then there is an embedding
of Hy in Gny1,1 whose image is denoted by Hy again such that, the group
Ho = (Gn1,1,Hp) is Hg-expansible and every element of Hy has a Hp-
symbol of the form

ai az - Qp Op4l
hi  hy --- hy 1 ) (3:2)
Qir A2x - OGpp Qnp+l

where m € Sy,. Moreover, Hg is finitely presented whenever Hy is finitely
presented.

Observe that the special form (3.2) of the Hy-symbols for elements of Hy
implies that every (simple) expansion of any Hy-symbol exists, and is again
an Hy-symbol. This immediately gives the following result which we state
for future reference.
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Lemma 3.5 Let A and T' be Hyg-symbols for some k € Hg. Suppose that
A is an expansion of I' and let B and C be finite bases in W, so that
B > top(A) and C = bot(A). Then the following hold.

(i) top(A) = top(I') and bot(A) > bot(T).

(i) There are unique Hyp-symbols Ay and Ay for k such that top(A1) =
B and bot(Ag) = C. Furthermore, Ay and Ay can be constructed
effectively and A <X A1 as well as A < Ao.

3.4 FAKE SYMBOLS AND FAKE EXPANSIBILITY

The following definitions are inspired by the results of the last section which
roughly say that an expansible group in which the elements have sufficiently
well expansible symbols is a good candidate for being finitely presented.

Let S, be the subgroup of G, 1 consisting of the elements which have a
symbol of the form

a ao - anp
1 1 - 1 (3.3)
iy A2x - QAnq
where 7 is some permutation of the set {1,...,n}. Obviously, S, is isomor-

phic to the symmetric group of degree n. Let E' and H be subgroups of G, 1
with £ C H. Then a fake-E-symbol for h € H is a symbol for A of the form

U1 U9 cee Ug
1 T2 e Tg
U1 ) “ee Vg

where z; € EU S, for 1 <14 < s. Furthermore we call H fake-E-expansible
if there exists a set of generators Y for H such that, if A is in H and
h =y ym with y; € Y*! for 1 < ¢ < m, then h has a symbol which
is the combination I'y --- T}, of fake-E-symbols I'y,..., [, for y1,..., Ym,
respectively. Note that this combination is rather a (E, Sy )-symbol than a
fake- E-symbol. The next two results relate fake expansibility and expansi-
bility.

Proposition 3.6 Let E and H be subgroups of Gn1 and E C H. If H is
fake-E-expansible and every e € E has a fake-E-symbol of the form

ai ao cee A,
T Ty -t Ty (3.4)
Q1lgx  QA2x " Opg

for some permutation w (possibly depending on e) of the set {1,...,n}, then
H is E-expansible.
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Proof. We must show that there is a generating system Y for H such that,
if 41 -y is any word in Y*!, then there are E-symbols I'y,...,T, for
Y1, - - - Ym, respectively, such that their combination I'y - - - T',, exists. To this
end let Y be a generating system for H such that H is fake- F-expansible with
respect to Y. Let yi - - ym be any word in Y1 and choose fake- E-symbols
Iy,...,T, for y1,...,ym, respectively, such that the combination I’y --- T,
exists. Observe that all of the I'y, have the same number of columns, C' say,
and that we can assume (by reordering if necessary) that the bottom row of
I’y is the same as the top row of 'y as ordered sets, for 1 < k < m — 1.
Now enumerate the columns of each T';, 1 < j < m, from left to right by
1,...,C and apply the following procedure.

Start with Step 1 and stop when you reach Step m + 1 where for 1 <¢ € IN
Step i is defined as follows.

Step iz Let X be the set of all numbers of columns whose middle row entry
in I'; is a non-trivial element of S,.

(a) If X is empty then go to Step 7 + 1.

(b) If X is not empty do the following.
For 1 < j < m simply-expand all the columns of I'; numbered by
some r € X and denote the resulting symbol by I'; again. Now
reorder the columns in I'q, ..., T, so that the bottom row of T’y
is equal to the top row of I'y 1 as ordered sets, for 1 <k <m—1.
Replace C by C + |X|(n — 1) and go to Step 1.

Note that (3.3) and (3.4) ensure we can execute part (b) and that C will
again be the number of columns of each of the I';. To prove that the al-
gorithm gives the required result we will show, by induction on ¢ < m + 1,
that

(a) Step ¢ will be reached and

(B) at the time of reaching Step 4 all of the symbols I'y,...,[';_1 are E-
symbols.

Part (8) holds because the only way to reach Step i is via Step ¢ — 1 part
(a), 1> 2.

As Step 1 is reached by definition, to prove («) it suffices to show that Step
i will finally lead to Step i + 1, 1 < ¢ < m. First let i = 1. As part (a) of
Step 1 leads immediately to Step 2, we only need to check part (b). By the
definition of X and (3.3) it is clear that at the end of Step 1 part (b) I'; is
an F-symbol, and the procedure continues with Step 1 part (a) which leads
to Step 2.
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Now consider 7 with m >4 > 1. Again Step 7 part (a) leads to Step i+ 1. If,
on the other hand, we have to execute Step ¢ part (b), then the definition of
X and (3.3) show that, at the end of this, I'; is an E-symbol. Furthermore,
using (8), if 1 < ¢ < C and for some j with 1 < j < i — 1 the ¢! column
of T'; has now a non-trivial middle row entry in S, then the c™® column of
I'; has trivial middle row entry. Thus, while going from Step 1 up to Step ¢
again, only columns with trivial middle row entry in I'; are affected. Hence,
using the induction hypothesis, we will come to Step ¢ part (a) which leads
to Step 7 + 1. This completes the proof of the proposition.

Next we show that with a little more care we can even deduce the E-
expansibility of H = (H, G 1).

Proposition 3.7 Let E and H be subgroups of G,1 with E C H and let
H be fake-E-expansible. Assume that there is a gemerating system Y for H
such that E CY and everyy € Y has a fake-E-symbol of the form

aj as . ay
x1 T2 . Ty
Qix Q2rx - Qng

for some permutation w© of the set {1,...,n}. Then H = (H,Gp,), the
group generated by H and G, 1, is E-expansible.

Proof. In the light of Proposition 3.6, it suffices to prove that # is fake-
E-expansible with respect to the generating system Z = Y U G, 1. Let
h =2z 2m 2z € Z¥', 1 < i < m. The proof is by induction on m. If
m = 1 it follows from the assumptions that h = z; has a fake- E-symbol.
So we assume that there are fake-FE-symbols 'y, ..., 1 for z1,..., 2m—1,
respectively, such that the combination I'; ---T'y, 1 exists.

First let z, € Y. Then z, has a fake-FE-symbol I' of the form (3.4), and
as ¥ C Y, every middle row entry of I' has such a fake- F-symbol too. An
induction on the number of simple expansions needed to go from {a,...,a,}
to bot(I'y,—1) now shows that we can expand I to a fake-E-symbol T, for
Zm such that the combination I'y - - - I, exists.

In the case z;, € Gy 1, let I' be a 1-symbol for z,,. Then there is a common
expansion U of the two finite bases top(I') and bot(I';,—1). The argument
in the proof of Proposition 3.6 also shows that we can expand all the I'y,
1 <k <m-—1, to obtain fake- E-symbols Ay, for z; such that the combination
Ay --- Ay exists and bot(A,,—1) = U. But there is also an expansion A,
of I' with top(A,;,) = U. Hence, the combination A;---A,, exists and
therefore H is fake- E-expansible, as required.
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3.5 PRESENTATIONS FOR FAKE EXPANSIBLE GROUPS

This section is entirely devoted to the proof of the following theorem.

Theorem 3.8 Let E,Y, H, and H satisfy the hypotheses of Proposition 3.7.
Then H is finitely presented, if E is finitely presented.

To begin with, we show that under the hypotheses of the theorem, # is in
fact generated by G,,; and E. Write £ = (G, 1, F) and note that £ is E-
expansible as a subgroup of the E-expansible group H, cf. Proposition 3.7.
So £ is the group of all those elements of G, 1 that have an E-symbol, by
Corollary 3.2. Since all elements of Y (or H if you like) have an E-symbol,
H=E.

Now let Z be a finite generating set for £. All what follows will be with
respect to the generating set Z* U G,,1 for . This is a generating set by
Lemma 3.1. By Theorem 3.3, x = AUBUCUD is a set of defining relations
for H, where A, B, C, and D are the sets of relations defined in Section 3.2.
We define three more sets of relations as follows.

Relation-set D". Let e € E and let

ul 'U/S
F=| z - =z
V1 ’US

be a fake-E-symbol for o.. Let S = {n9,...,7m5} be a set of type s

with corresponding basis {ai,ws, ..., ws} and define 7 and e by the
symbols

u1 UQ CRCEEY us al w2 TR ws

1 1 - 1 |ad| 1 1 -~ 1 |,

al w2 e ws Ul 1)2 DY US

respectively. Furthermore, let RZ,P, g denote the relation

O¢ = TOg 120z, =" TsOg,Ts - " T]2€.

Then D" is the set of relations R} 1 5 for all possible choices of sub-
scripts.

Note that this differs from the definition of the set D only in the use of

‘fake- F-symbol’ in place of ‘FE-symbol’. But clearly each E-symbol for o, is
also a fake- E-symbol for o,, so that D C D".
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Relation-sets D' and D. Let e € E and let

al ) a/n
r=| z - =,
Gix - Gpg

be the fake-E-symbol (3.4) which exists by hypothesis. Let ¢ be the
same element as in the definition of the relation set C' and let §;,
1 <7 < n act on the basis

{a1,a2,...,an_1,ana101,...,0,010y,0p0a2, ... ,an0,}

as the involution that interchanges a; with anaia; and fixes all the
other elements. We let R, denote the relation

O¢ = 00104,0004, -+ Op0g, O -+ 0100. (3.5)
Then D' = {R.|e € E} and D = {R. |e € Z}.
Remark. As the elements o¢, 6§, §; (1 < i < n) play a significant role

throughout the remainder of this section, we have provided reminding tree
diagrams in Appendix C which can be folded out.

Observe that D is finite, and our first aim is to show that together with
AUBUC it implies D' (Lemma 3.11). Define ' = AUBUC U D' and
x'=AUBUCUD". As AUBUUC is finitely based, by Theorem 3.3, the
theorem will then follow immediately from the next lemma using x C x”.

Lemma 3.9 FEvery relation in X' is a consequence of relations in x and each
relation in X" is a consequence of relations in x'.

Before we prove Lemma 3.9 we need a few more facts. The next result is
Lemma 12 in [35].

Lemma 3.10 If {n9,...,ns} is of type s and u is a permutation of the set
{m,...,r}, 1 <m < r <s, then the relation

Ogm 77m+1‘79m+1 M Og, = aﬂagmunm+10’g(m+1)u o nragmﬂu

is a consequence of AU BUC, where o, and 3, have symbols

w2 r Wm Tm Tm4l 0 Ty Wpgl o Ws
1 ... 1 1 1 ee 1 1 | and
w2 Wy A1 Wm4l ot Wr Wegl o Ws
Wy o Wiy Wiptd s W, a Wpg1 - Ws
1 ... 1 1 ... 1 1 1 .. 1
w2 o Wm Ym+1 o Yr Y4l Wrpl 0 Ws

(Tt = a1, j = wjy (Jpu # M), Yir1 = Wiy (ip #1)).
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Let us record a few relations implied by AU B U C which will be used soon.
But first observe that {d1,...,0,} is a subset of a set of type 3n — 2. Let
S ={n9,...,ms} be any set of type s and e, €’ € E, then the following hold.

=1 for2<i<s (3.6)

ninioen; = njoen;ni  for2<i#j<s (3.7)

OeNiTerTi = NiCelM)i0e for2<i<s (3.8)

The definition of a set of type s gives immediately (3.6). Equations (3.7)

follow from B and the fact that 7;7;n; fixes a1 if i # j. Finally, if we assume
that {a1,ws, ..., w,} is the basis corresponding to S and define 7;, 2 < i < s,
to be the element of G, 1 given by a symbol whose only non-trivial columns
are

Apn a1 w;
1 and 1 ,
W; ana1

then 7; fixes a; and 7;m;7; = §. Hence (3.8) is a conjugate of a relation in C
under 7;.

Lemma 3.11 Let e € E have the fake-E-symbol

ai anp
Yy Yn ]
a’lp anp

then the relation R, € D' is a consequence of Y = AUBUC U D.

Proof. We use induction on the length of e with respect to the generating
set Z. If e has length one, then R, is already in D, so we assume that e = fz
with z € Z, f € FE and f is of strictly shorter length than e. Suppose f and
z have the fake- F-symbols

al DO an al DRI an
fi - fa and 21 "t Zp ’
ala DRCEY ana alﬂ Y anﬂ

respectively. Since o, = o0, is a consequence of A,
O¢ = 00104000, ++ 0p0f, 0+ 010040010,,000,, *++ 0p0,,0p -+ 61008

is a consequence of . It is easy to see that do, ¢ fixes a1 and hence commutes
with every o,; for 1 <4 < n, by B. That 66,00; = §;,-10046 holds in Gy 1
is also easy to check, whence

O = 0010 -+ 0p0f,0n " 01014-104 *+* Opa=104,0pq-1** 014-100408
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is a consequence of x. Clearly, 0,03 = 0,4, and using (3.7) and (3.8) we
get
O¢ = 00104,0,,,000 1,025, "+ 0pn0,04,,0n 010044

as a consequence of x. But

all ) an
fizia -+ faZna
A1af "  Qnap

is the combination of the two given symbols for f and z and, by Lemma 1.4,
p = aff and y; = fizio. Furthermore, 0, = 0,03 is a consequence of A and
Oy; = 0,04, is a consequence of A whenever both, f; and z;,, are either in
E or S,. But this always holds, for we know that y; is in EU S,,. Thus R,
is a consequence of ﬁ, as required.

Lemma 3.12 FEvery fake-E-symbol for o, is an expansion of

al ao Ses Qp
I'= e 1 --- 1
a1 ao e Qp

Proof. Let % be the fake- E-symbol

u]. “ e us

1‘1 PRCEEY l‘s

Ul e ’l)s
for .. Then {uy,...,us} is a finite basis and therefore an expansion of
{a1,...,a,}. As any expansion of {ai,...,a,} leads to an expansion A of

I" such that A is a fake- E-symbol for o, there is a fake- F-symbol A for o,
of the form

ul “ e us
yl " ys
zl “ e ZS

which is an expansion of I'. It follows, by Lemma 1.4, that z; = y; and
z; = v; for 1 <7 < s, which implies A = ¥. Thus the lemma is proved.

Proof of Lemma 3.9. Let us first show that every relation in ' follows
from the relations in x. To this end let e € E have the fake- E-symbol (3.4)
and let J be the subset of {1,2,...,n} satisfying z; € S, if and only if j € J.
Let K = {1,2,...,n}\L and suppose J = {j1,...,j-} and K = {k1,..., Kk}
Then

apay -+ GpQp G2 - QAp—1 Q10 Q10
T = 1 .. 1 1 - 1 Th, o Th
ana@i1 -+ QpQp G2 -** Aap—1 Q10kgx *** Q10
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alajlal e alaljlan e alajral e ala:j,ran
1 . 1 ... 1 . 1
aflafjlﬂalzh te alafjlﬂanacjl Tt 01G5,7Q1g;, 1G5, 0ng;,

is an E-symbol for o.. Note that I' has s = rn 4+ t + 2n — 2 columns, and
let S = {n2,...,7ns} be the set of type s corresponding to the ordered basis

{al, ApQy ... 30p0n,092,...,0p 1, analakl, . ,analakt,

AnQ1Gj5,Q1,y .- ,0nA1805,Qpn,...,0nA0105,41,... ,analajsan}.

As all this might be a little confusing, Appendix C shows schematic pictures
of the top row of I' and this basis with the appropriate labelling used in the
definition of the relation set D. We consider the relation Rer.s in x (see
(3.1)); namely

O¢ = TN2 " 2n—2"M2n—10xy, """ 12n—2+4t0xy, N2n—2+41 " - 7)2€

after the obvious cancellations using (3.6). Note that 7 = ¢ and 7op_24+; =
Ok;- So, by using (3.6), (3.7), and (3.8), we obtain
0
Oc = (5035’,?1 ---Ji’fjte
as a consequence of x. The relation € = Jiﬁ
A (see Appendix A). Thus

d; .
-+-0g; 0oy is a consequence of

T

9 O, Oj .
Op = 50;5’,211 . oml,cc‘i ogp af;;.’; Yo

is a consequence of x, and, using (3.7) and (3.8) again, we get R, (see (3.5))

as a consequence of x, as required.

We now turn to the the second part of the lemma, whose proof is similar to
that of Lemma 19 in [35]: we show that every relation in D" is a consequence
of x'. Let

U1 Us
A — Ty - Ty
V1 Vs

be a fake- E-symbol for o, e € F. Then, by Lemma 3.12, A is an expansion
of the symbol in Lemma 3.12, and by Lemma 3.10 we can, and will, assume
that the columns of A are in any order which suits us. The proof is by
induction on the number m of columns of the form

alu
l
alv

in A. The pattern of the induction is as follows. We first prove the cases
m =1 and m = n and then turn to the induction step.
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If m =1, then
ap uz -t Ug
A= e 1 --- 1
a; Uy e U

and the corresponding relation in x” is o, = To.e. But 7¢ = 1 is a conse-
quence of A, in this case, and 7 fixes a1, so the result is a consequence of
AU B.

If m = n, then

aay -+ 01Gp  Up41 - Ug
A = z - Zn 1 | ,
a1Qigx  *** Q1Gpg Up41 1+ Ug

by (3.4), and the corresponding relation in D" C x" is

O¢ = TOx, 120, " * " MOz, M - - - T2E- (3.9)

Let a be the element with symbol

ai w2 Tt Wn, Wp+1 = Ws—1 Ws
1 1 1 1 1 1 )
a;r ap@i1az - QpA1GH Zpyl . Zs—1  QRA10]
for some zp41,...,2,_1. The relations o 'n;a = §;, 2 < i < n are conse-

quences of A and « fixes a1, so
-1
Oe = 00107 "04,M20, *** MnOg, N * - - 20100

is obtained from R, (see (3.5)) as a consequence of x'. The element Tad;6
fixes a1, because

o [ . .
a1a; N w; ey an,a10; - anaia; +— aia;, if2<i<n
aia; — a1 al = apaia; +—  a1aq

Hence, using B and (3.6),

O = Ta5156(51a710w1772 S MO, Tn n2a616077(5(51a717'71

is a consequence of x’. Furthermore, the relation ad;éo,601a 177! = ¢
follows from A (see Appendix A), whence (3.9) is a consequence of x'.

We now turn to the inductive step. Consider the simple expansion

Uy - Us-1 Usa1 tet UsQn,
Ty - Ts-1 Y1 T Yn
vy e vso1 vs(arm) - wvs(anm)
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of A. For a given set of type 7 = s+mn — 1 we have to show that the relation

Oe = TOgM20zy """ Ns—10g,_11Ms0y; " " Oy, Tr * * " 12€

follows from x’. By the inductive hypothesis we can assume that, for any
set {vo,...,vs} of type s,

! !
O¢ = T Og Vo0g, ** " VsOg Vs * + * V€ (3.10)

is a consequence of x’. Let 8 be the element with symbol

a w2 - Ws—1 Wsg W41 - Wy

1 1 -« 1 1 1 .. 1

ap 22 -t Zs—1 RsQ1 252 - ZsQp
for some 2y, . . ., z; and define v; = B~ '8, 2 < i < s—1. Then there exists v,
such that {ve,...,vs} is of type s with corresponding basis {a1, 22, ..., 25}

With the symbol

29 trt Zg  oQi1G1 o Ql0p
1 --- 1 Y1 - Yn
Z9 rt Zg Q1Qix . A10pg

for o,,, the case m = n implies that

Ty = T2+ 15Oy, Ts1 * * Ty T+~ 126" (3.11)

is a consequence of x’. The relations 71 -+ ns_1 = V87!, €'vg+ 1€ =€
and 787! = T are consequences of A (see Appendix A), and hence

Oe = TOgVo0g,  VsOg Vs Vo€

7-//8_10m7720'z2 Tt 773—1%5_15%%31/5 R %14

— 7—'/8_10-3;17]2 A Uzs_l/@VST”'OZ C N0y M1 Oy M+ * 7726”7/3 e y26’
TOx M2 Oge_1NsOy  Ns+1 """ Ty, TIr =~ " 7)2€

!

is a consequence of x'. Here the equalities follow from (3.10), the definition
of the v; and B as 3 fixes a1, (3.11), and the argument of the preceding para-
graph respectively. This completes the proof of Lemma 3.9 and Theorem
3.8.

45



CHAPTER 4

SUBGROUPS: PART II

In this chapter we will describe finitely presented simple groups which have
more complicated subgroups than the groups G . In the first section we
state without proofs the results of Scott showing that G L,,(Z) can be embed-
ding in finitely presented simple groups for all n > 1. Recall Theorem 2.7;
GL3(Z) is not a subgroup of any of the groups G, ,. In Section 4.2 we
prove that finitely generated infinite torsion groups cannot be contained in
any of the finitely presented simple groups with solvable conjugacy problem
constructed so far. The following section introduces a well known class
of finitely generated infinite torsion groups. These are the Grigorchuk-
Gupta-Sidki groups. In the remaining two sections of the chapter we con-
struct finitely presented simple groups that have subgroups isomorphic to
Grigorchuk-Gupta-Sidki groups.

4.1 SOME EXPANSIBLE GROUPS

Using the #-construction (see Section 3.3) Scott was able to prove the fol-
lowing two theorems [36].

Theorem 4.1 For every n > 1 there is a finitely presented simple group
containing Z"><GLy(Z) as a subgroup.

In fact it is shown that Z">GL,(Z) is isomorphic to Hy for a suitable
homomorphism 8 : F — F ! Symgn_;, where F' is a free group of rank
2n +1

To understand the next result, let us recall some facts about abelian groups.
Let A be a countable abelian group and let T be the set of all periodic
elements. Then T is a characteristic subgroup of A, and A/T is called the
torsion factor group of A.

Theorem 4.2 Let m be an integer. FEvery countable abelian group whose

torsion factor group is a finitely generated Z[%]—module is embeddable in a
finitely presented simple group.
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This theorem is proved by showing that for n € IN the group with presenta-
tion (a,b| b lab = a™) is isomorphic to Hy for a homomorphism 0 : F —
F 1 Sym,,, where F' is free group of rank 2 and suitable n € IN. This result
should be compared to Theorem 2.8.

For completeness, let us also record the following theorem, which was ob-
tained by Scott [37] with quite a different kind of expansible groups. It uses
a construction of C.F. Miller III [31] for finitely presented groups with an
unsolvable conjugacy problem which are extensions of one finitely generated
free group by another free group of finite rank. A group G is said to have an
unsolvable conjugacy problem if there is no algorithm which decides whether
two arbitrary given elements of G are conjugate in G.

Theorem 4.3 There exist finitely presented simple groups with unsolvable
conjugacy problem.

4.2 TOoORSION LocAL FINITENESS

The main result of this section shows that all the groups G, » and the groups
constructed by Scott in [36], i.e., those groups of Theorems 4.1 and 4.2, are
torsion locally finite (Theorem 4.8). A group is called torsion locally finite
(t.l.f.) if every torsion subgroup is locally finite, or equivalently, if every
finitely generated torsion subgroup is finite. We believe this result to be of
independent interest. Our main interest, though, comes from the fact that
it shows that the groups considered in Sections 4.5 and 4.6 are genuinely
new finitely presented simple groups. Let us start with an observation.

Lemma 4.4 The class of torsion locally finite groups is closed under exten-
sions and subgroups.

Proof. Only the statement about extensions requires proving. To this end,
let N be a normal subgroup of the group G, let 7 : G — G/N be the
natural projection and assume N and G/N are both t.1.f. Let S be a finitely
generated torsion subgroup of G. We have to show that S is finite. Clearly,
S™ is a finitely generated torsion subgroup of G/N and therefore finite. Let
K be the kernel of the restriction of = to S, i.e., K = NN S. Then |S : K|
is finite, whence K is a finitely generated torsion subgroup of N and hence
finite. So S is finite, as an extension of the finite group K by the finite group
S™. The lemma, is proved.

Recall the -construction from Section 3.3, in particular, Proposition 3.4,
which implies that Hy acts length preserving on W,,. Recall also Lemma, 3.5.
We move on to examine the structure of finite subgroups of Hy. Suppose
K is a subgroup of Hy. A basis B is said to be a K-basis if it is finite and
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every element of K has an Hy-symbol whose top and bottom row are equal
to B.

Proposition 4.5 If K is a finite subgroup of Hy, then there is a K-basis.

Proof. Tt suffices to find a finite basis B such that, for every b € B, each

k € K has a column
b

h
c

with ¢ € B and h € Hy. To this end let K = {ki,...,k:} (t = |K|) and
for 1 <4 < tlet I'; be an Hyp-symbol for k;. Let C be a finite basis of W,
contained in ﬂgzl top(I';)W,,. In particular C > top(I';) for 1 < i < ¢, and
hence there are (unique) Hy-symbols A; for k; with top(A;) = C, by Lemma
3.5(ii). Let U = N._, bot(A;)W, and B = By, i.e. B = ||'_; bot(A;). We
claim that B has the required properties.

First let u € U. Then u € bot(A;)W,, for 1 <4 <t and, by Lemma 3.5 (i),
there are v; € CW,, and h; € Hy such that k; has the column

U;
h;
u

Choose k € K and note that B > C, since 1 € K. By Lemma 3.5, k has a

column
U

h
w

with (unique) w € W,, and h € Hy. Hence

v;
h;h
w

is a column of k;, = k;k, and v; € CW,, implies w € bot(A;,)W, for 1 <
7i <t. Thusw e U.
Now let b € B, in particular, b € U. Then, by Lemma 1.1b), b € bot(A/)
for some j, 1 < j < t. Hence

c

h
b
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is a column of k;, where ¢ € C, h € Hy. For k € K with column

b
hl
w

we see that
c

hh'
w

is a column of A; where k; = kjk. Together with the previous paragraph it
follows that w € U Nbot(4;). So, by Lemma 1.1c), w € B, as required.

Addendum. The above proof actually establishes a more general result.
Namely, if D is a finite basis contained in ()/_; top(T;)W,,, then

DX = |i|bot(2i) (4.1)
=1

is a K-basis, where ¥; is an Hy-symbol for k; with top(X;) = D. We call
D the K-closure of D.

Let us now describe subgroups K of Hy that admit a K-basis.

Lemma 4.6 Let K C Hy have a K-basis B. Then K embeds in the permu-
tational wreath product Hyg!Sym(B) of Hy with the symmetric group on the
set B, where Hy acts on itself via right multiplication.

Proof. Let B = {by,...,bs}. Then each k € K has an Hy-symbol of the
form

by by e bs
hi(k) ha(k) ... hs(k)
bimp,  bomp ... bgmy

with h;(k) € Hy and 7 € Sym(B). We leave it to the reader to check that
the map ¢ defined by

is an embedding.

Theorem 4.7 Let Hy be a group defined by a homomorphism 0 : FF —»
F 1 Sym,,_; as in Section 3.3. If Hy is torsion locally finite, then Ho =
(G, Hyp) is also torsion locally finite.
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Proof. By Lemma 4.4, Hy!Sym(B) is t.Lf. for any finite set B. Thanks to
the previous lemma, it therefore suffices to show that every finitely generated
torsion subgroup K of Hgy admits a K-basis. The proof is by induction on
the minimal number, d, of generators for K, the case d = 1 follows from
Proposition 4.5. So we assume that d > 1, and K = (ki,...,kq). Define
G = (k1,...,kg1) and X = (k4). By the induction hypothesis, G and X are
finite and have G- and X-bases Ay and A, respectively. Let A = Ag Ll Ay
and define inductively, for ¢ > 0,

By=4", C;=B and Biy, =C;"
Note that the B; and C; are (finite) X- respectively G-bases. Furthermore,
the proof of (4.1) shows that for each b; € B;, i > 1, there are ¢; € C;_1,
h; € Hy, and z; € X such that

is a column of z;. Similarly, for each ¢; € C;_1, ¢ > 1, there are d; €
B;_1,1; € Hy, and g; € G such that

l;

&)

is a column of g;. Repetition of these arguments shows that for all 7 > 0
and b € B; there are b € By, hy € Hy, and an element k, € K = (G, X) such
that _

b

b

b

is a column of k.

Assume now, in order to obtain a contradiction, that the chain
A=XBy2Cy 2B 2C X+ (4.2)

does not terminate. Then we can find a not eventually constant sequence
bg, b1, bo, . .. of elements of W), with b; € B; and b; < b;41 for all 4 > 0. Since
By is finite there exist ¢ > j such that b; # b; but b = b_j, showing that
k= kb_jlkbi has the column

b
hb_jlhbi
b;
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Using b; > b; and the fact that Hy acts in a length preserving manner, it is
easy to prove that k has infinite order, which is a contradiction. Thus the
chain (4.2) terminates and it is obvious that its last element is a K-basis.
This completes the proof of the theorem.

Note that all the groups Hy used in [36] are either torsion-free or isomorphic
to Z">GL,(Z) and therefore t.Lf. (see for example [33]). Using also the
fact that G, , embeds in Gy, ;1 (see Section 1.4), we have the following.

Theorem 4.8 All the groups G, G;w" and all the finitely presented simple

groups constructed by Scott in [36], i.e., the groups of Theorems 4.1 and 4.2,
are torsion locally finite.

At this point we should also mention that the finitely presented simple
groups recently constructed by Burger and Mozes [9] are t.1.f., indeed torsion
free. This follows immediately from their presentation as a free product with
amalgamation F x4 F, where F' and A are finitely generated free groups.
Therefore, Theorem 4.8 tells us that none of the previously known finitely
presented simple groups can be isomorphic to any of the groups H,’ which
will be constructed in the following sections, with one possible exception;
the finitely presented simple groups with unsolvable conjugacy problem of
[37] (Theorem 4.3).

4.3 GRIGORCHUK-GUPTA-SIDKI

In the following we give a short introduction to Grigorchuk-Gupta-Sidki
groups (GGS groups hereafter). This terminology was introduced in [2] by
Baumslag. We first describe the ‘original’ Grigorchuk groups as defined in
[18]. Then we turn to closely related groups including those investigated
in [22] by N. Gupta and Sidki. Originally, Grigorchuk defined his groups
by their action on the unit interval, whereas Gupta and Sidki considered
automorphisms of rooted regular trees. Later it became popular to describe
all these groups as subgroup of the automorphism group of a rooted regular
tree (see for example [2, 34]). This approach appears more intuitive.

We begin with the description of Grigorchuk groups. Our description here
will be in the language of inescapable isomorphisms. But it is straightfor-
ward to extend these inescapable isomorphisms to graph automorphisms
of the tree W), described in Section 1.2 (see Section 5.3). Instead of n we
now use p, since it makes the comparison of the original definition with
ours a little easier. (In [18] p was always a prime, but for our purpose this
is irrelevant.) Given an infinite sequence w = w(0)w(1)... with values in
{0,1,...,p — 1}, define the inescapable isomorphism b, of W), by its action
on the basis

T T T A
{ap"ar1a1,...,ap"a1ap,ap"ay,...,ap"ap_1 |7 > 0},
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the action is

ay"aia; apTal(aiﬁw(T)), 1<i<p
ap"a; = ap'ay, 2<j<p-1

where m denotes the cyclic permutation (ajasz...a,). See Fig. 18 for an
example.

FIGURE 18: THE ELEMENT b, WITH w = 120120120--- AND p = 3

Given a sequence w with values in {0,1,...,p} define the two maps ~and ~
from {0,...,p} to {0,...,p — 1} as in [18], i.e.,

_ )0, ifz=p . )1, ifz=p
J:_{1, ifz#p andz—{m’ ifz#p ~

The Grigorchuk group G, is isomorphic to the subgroup of G, 1 generated
by bg, by and the inescapable isomorphism vy with symbol

ay az ... Qp—1 G
1 1 ... 1 1 ]. (4.3)
as ag ... ap aj

As mentioned above, in [18] the groups G, are described by their action
on the set C of all open intervals of the real line of the form ( pik, tz‘)"—kl) with

0<t< pk —1and 1 < k € IN. The isomorphism between G, as described
above and G, as described in [18] is induced by the bijection between W),
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and the set C that lets a; a4, ---a;, € W), correspond to (ﬁ, ;"—kl), where
ok il
b=k, Lot

Remark. It is worth noting that the nature of the maps ™ and ~ is irrelevant
for our arguments. However, they played a crucial role in [18] for deducing
that G, is a finitely generated infinite torsion group of intermediate growth
in case each of the letters 0,1,...,p occurs infinitely many times in w.

Let us quickly recall the definition of some other groups which were con-
sidered during the search for groups of intermediate growth in the early
eighties. N. Gupta and S. Sidki investigated in [22] the group G¢s which is
defined for p = 3 and generated by the element v with symbol (4.3) and b
which has the fake-(b)-symbol

a1 ag as
—1

vy oy b

a1 ag as

J. Fabrykowski and Gupta studied in [15] and [16] the group G,, for p = 3
and w = 111--- with the task to show that it has intermediate growth.
Their proofs, however are not complete. Recently L. Bartholdi [1] has given
a unified method to show that several two generated GGS-groups are of
intermediate growth.

The most general sort of groups similar to those above are called special
groups by Grigorchuk [20]. They are defined as follows. Let R be a subgroup
of the symmetric group on {a1,...ap}. Now let w = w(0)w(1)w(2)--- be an
infinite sequence where each w(7) is a (p— 1)-tupel of elements of R. Assume
w(t) = (w(i)1,...,w(i)p—1) and define b, to be the element with symbol

a1 as E ap—1 ap
w(i)i w(@)z - w(@i)p—1 bus |,
a1 az E ap—1 ap

where £ is the forget map (4.4). A special group is a group generated by R
and a finite set D of elements b,,.

4.4 Tue GROUPS E;, AND Hy,,

Here we describe some fake expansible groups which are used to prove that
every Grigorchuk group G, which is defined by an almost periodic sequence
w can be embedded in a finitely presented simple group (Theorem 4.10).
More general examples are given in Section 4.6. The reason for singling out
the groups in this section is that our investigation of decision problems in
Chapters 5 and 6 deals with these groups only.
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Fix p, f € IN and define Q = {0,...,p — 1}N0; thus, if w € Q then w =
w(0)w(l)w(2) ---. For n € IN define the sequence [n] by
~_ J 1 ifi=0(modn)
[](0) = { 0 otherwise

The “forget” map « is defined by

K Q — Q (4.4)
w=w0w(l)... — w'=wl)w(2)... '
Define Qg = {[pf]'“ |0 <i<pf—1} and let Ef, be the subgroup of G, ;
generated by the set {b, |w € Qo}, where b, is defined as in Section 4.3.
Observe that for 0 <: <pf —1

i, 1 ifj = —i(modpf)

K —

/17 () _{ 0 otherwise

Note that if we define the sum of the two sequences w,w’ by (w + w')(z) =

(w(i) + &'(i))(mod p) then we have byb, = b, .. And a glance at Fig. 18
tells us that b, = 1 for all w € Q4. Furthermore, b, has the symbol

aj a ... Gp-1 Qp
O 1 1 by |, (4.5)
aj az ... Qp-1 Qp

where v is the “top spin” with symbol (4.3)). Since v € S, and [pf]”i =
[p f]”pfﬂ for i € IN, we have that Ey, is fake-E ,-expansible (with respect
to the generating system Ey;) and each element e of Ey, has a fake-Ey -
symbol of the form

ap as - ap_l ap
1 o1 €, (4.6)
ap as --- G,p_l ap

where 0 <k <p—1, ¢ € Epy,.

Define H , to be the subgroup of G, | generated by G, 1 and Ey,. Applying
Proposition 3.7 with H =Y = E = E;, we get the following lemma.

Lemma 4.9 The group Eyp is isomorphic to the direct product of pf cyclic
groups of order p, and the group Hyp, = (Efp, Gp1) is Eyy-expansible.

In the following section we show that the group #;, defined above has a
finitely presented simple commutator subgroup which contains an isomor-

phic copy of each Grigorckuk group G, if w is periodic of period f.
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4.5 THE COMMUTATOR SUBGROUP OF Hj,

Let us call the infinite sequence w almost periodic if there exist k, f € IN,
such that w(i) = w(i + f) for £ <4 € IN. In this case the least such f is
called the period of w. We also say that the sequence w is almost f-periodic.

Theorem 4.10 Let Hj,, be the group defined in the previous section. The
derived subgroup of Hyp is a finitely presented simple group and contains
every Grigorchuk group G,, which is defined by an almost f-periodic sequence
w.

Proof. The simplicity of Hy,,' follows from Lemma 2.3. Since Ey,, is finite,
we can apply Theorem 3.8, to get that 7, is finitely presented. So H,’ will
be finitely presented if it has finite index in # ¢, (Coroll 2.8 in [28]). Thanks
to Lemmas 2.1 and 4.9, 2% € H;,' for all z € Gp1 U Ef,. As G, U Ey,
contains a finite generating system for Hy,, we get that Hy,/H,' is a
finitely generated abelian group of exponent at most 2p and hence finite, as
required.

Now it only remains to show that H f,p' contains the required Grigorchuk
groups. First note that if w is any fp-periodic sequence then b, € Ej,,.
Thus Hy, contains oy, where @ is fp-periodic and begins with

10...020...0...(p—1)0...00...0.
f

~ v
~~

pf

Let a be the element with symbol

asaq agap_l a1 agap az - ap
j 1 1 1 1 -1 (4.7)
aiay ¢ alap_l alap ao [ ap

—1 _ —f~—1_f _ !
and observe that o~ oy, a = 0p,, and hence « Oy, O Oy, = Oy, € Hip -
Furthermore, for every f-periodic sequence w, oy, € Hyp'.

As E* = F for every subgroup E C Gy 1 (see Section 3.2 for the definition
of E*), in order to complete the proof it suffices to exhibit o, and Op 5 aS
elements of H,’ for every finite sequence v with entries in {0,1,...p — 1},
where 0 = 000. .. and + has the symbol (4.3). By Lemma 2.1, G}, ; = Gy if
pis even and o, € Alt({a1a1,...,a1ap,a2,...,ap}) C G;,’l if p is odd, where
Alt(Y) denotes the alternating group on the set Y. Therefore, o, € Hy '
and 0, € H f,p'. From Obs = Oo, and the last paragraph it follows that
o 5 € Hp,p' for every finite sequence v with entries in {0,1,...p —1}. The

proof of Theorem 4.10 is complete.

55



CHAPTER 4

Remark. It can be shown that H f,p' contains in fact subgroups isomorphic
to any Grigorchuk group defined by an almost fp-periodic sequence. For
such a group is clearly a subgroup of (v, Ef,) which, in turn, is a finite
extension of (v, Ef,) NHyyp', and therefore embeddable in #,', by Corol-
lary 3.2. This approach, however, does not establish the natural embedding
that is obtained in the proof of the theorem.

Corollary 4.11 The group Hy, is generated by three elements.

This follows from Section 2.6 and the fact that E* is generated by b2,
0 <i<pf—1, where w = [pf] and « is the element with symbol (4.7).
To be more precise, Hy,, is generated by by, and the elements ab and c,
with &, b, and ¢ as defined in Appendix B. By noting that c is always an
element of G, ,', we see that the index of H;,' in H, is at most ep because
(ab)®, (byps))? € Hyp', where € is the largest common divisor of 2 and p — 1.
In fact, we have the following.

Corollary 4.12 The group Hyy,/Hyyp' is cyclic of order ep, where € is the
largest common divisor of 2 and p — 1. In particular, Gp1 N Hy,' = Gpi'.

Proof. For an fp-periodic sequence w define
M(w) = w(0) +w(1) +---+w(pf —1) (mod p),

and note that M(w + w') = M(w) + M(w') (mod p) and M (w) = M (w"®)
(for k see (4.4). This implies that the map A : Hy, — Z/pZ which maps
the Ey,-symbol

ul ) us
by, - b,
/Ul .. US

to M(wi + - + ws) is a homomorphism, which is onto, as A(oy, ) = 1.
If p is even this proves the statement, since T is the only generator not
lying in Hy,'. If, on the other hand, p is odd, then it follows from the fact
that «y is an even element of Gy, -, that we can define even elements precisely
as in Section 2.1. In detail: write an element h of H;, as a product of
an order preserving element and an element with a flat E;,-symbol A, i.e.,
top(A) = bot(A) (see Section 5.2). Hence, there is also a homomorphism
from H, onto the the cyclic group of order two, mapping an element onto
the generator if the induced permutation in the top row of the flat symbol is
odd. Since p was odd, we have now a homomorphism onto the cyclic group
of order 2p. The last assertion follows from this, and the proof is complete.

In the remainder of this section we prove that H s, and H;,' are generated
by two elements. This should be compared with Section 2.6. To simplify
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notation, we write w for b, and switch to additive notation for the group
Efp, i.e., byb, becomes w + w' and b;! will be —w. We need the following
a lemma.

Lemma 4.13 Let z be defined by the tree diagram

- w

where w = [pf]. Then Hy,' is generated by Gp1' and z.

Proof. 1t is clear that the following relation of Ef ,-symbols holds.

UL o Ug UL o Ug UL e Ug
w1 S Wy — w1 cee Wy 1 e 1 (4.8)
V1 v Vs UL o Ug V1 o Vg

Assume that the symbol on the left hand side of (4.8) defines an element of
Hyp'. Then M(wi + -+ ws) = 0 and the element defined by the 1-symbol
on the right hand side of (4.8) lies in Gp 1’ (see proof of Corollary 4.12). So
it suffices to show that we can generate every element with an Ef ,-symbol
of the form

ul PECEEY us
A= w - ws |,
ul PECEEY us

with M (w1 +---+ws) = 0. As in the proof of Theorem 4.10, by conjugating
z with positive powers of the element o with symbol (4.7), we can generate
all elements with tree diagrams of the form

4 A

where p = w*' for some i > 0. Observe that o € Gp,l'. We can now
multiply some of these conjugates of z together to get every element with a
tree diagram of the form

MPo  p
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for arbitrary fp-periodic p. Furthermore, we can assume, by possibly con-
jugating, that us = a1a; in the symbol A. It follows that we can generate
the element with symbol

Uy - Us—1 aiax
I'= Wy o Ws—1 _M(wl +--- +ws—1)w
Uy - Us—1 aia

with our given generators. After multiplying A with I'"!, we are left to
show that we can generate the element with symbol

up v Us—1 G101
=1 ... 1 W,
up vt Us—1 G101

where w' = wy + M(w; + -++ + ws—1)w. Note first that M(w') = 0, and
then that z is conjugate under an element of Gp,l' to the element with tree
diagram

—W

which multiplied with z gives an element conjugate to oy, where @ is fp-
periodic with period 1 — 100--- 0. Finally, for every fp-periodic sequence @
with M (@) = 0, oy is a product of conjugates of o under positive powers of
a. In particular, we get o,y which is a conjugate of the element with symbol
3, and the lemma is proved.

Theorem 4.14 The groups Hy, and Hyp' are generated by two elements
forall f >1,p>2.

Proof. First you should fold out Appendix B again. Read those tree dia-
grams with the dashed lines and assume r = p = n. They define elements
of Gp,1. Note that the results of Section 2.6 are still valid, since G, is
isomorphic to G 1 by interpreting z; as a; for 1 <4 < p. For the rest of this
proof w = [fp].
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We begin with H;,. Assume p > 3, and put

and a =

Check that [a,e] = [a,b] = [b,e] = 1. Let x = abe, then zP = ab? and
(%) = (b). So, by Section 2.6, G, 1 = (a,b,c) C (z,c). Since a,b € Gp1,
e € (z,c). But e is conjugate to o,, and we are done, by Corollary 4.11.
Suppose now p = 2, and define

w

Now [e,d] = 1 and with z = de, one checks that czic™! = band 2° = a(= a).
Hence G21 C (z,c). Asd € Ga1, e € (z,c), and e is again conjugate to oy,
so (z,c) = Hyo, by Corollary 4.11.

Let us now turn to Hy,'. Assume first that p is odd; thus, we are in the
first case of the definition of b. This time define

w W

and put z = Gbe. Then zP = ab? and (zP°) = (b), whence, by Section 2.6,
Gp1' = (a,b,¢) C (z,c). As before, a,b € Gp;' implies e € (z,c), and
Lemma 4.13 completes this case, using that e is conjugate to z defined in
that very lemma. Next we assume that p is even but not two. Then define

w -w

and let ' be a p-th root of @ such that o' fixes as, ..., ap, a1a,_1, and aiap,
cf. Lemma 2.9. Similar as before, with z = a'be, we find (z,¢) = H;,'. And
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finally, if p = 2, we let

and check that a,b,c,e € (de,c), so that Hyo' is generated by de and ¢, by
Lemma 4.13. The proof of the theorem is now complete.

4.6 MORE EXAMPLES

Here we give some more examples of fake expansible groups. Interested
readers would probably not have any difficulties in finding these very quickly
on their own, as they are more or less straightforward generalisations of the
groups Hy p.

First let us note that the group Ggg described at the end of Section 4.4
is not contained in Hy, in any obvious way. But it is easily seen to be
a special group. Let us show that a special group defined by an almost
periodic sequence is also embeddable in a finitely presented simple group
using groups similar to Fy, as follows.

Let p € IN and let S, denote the symmetric group on {a1,...,ap}. Given
an infinite sequence w with values in S, and 7 € {1,...,p}, define the in-
escapable isomorphism b; ., by its action on the basis

{a’praial, st 7apraiap7apraj |’I" Z 07 1 S .7 S b, .7 # Z}’
the action is

ap"aja; = aplai(agy), 1<i<p
apy"a;  —  ap’aj, 1<j<p—1,57#1.

Choose a period f and define
E={biw|1<i<p-—1, w;an f-periodic sequence}.

Noting that E is isomorphic to a subgroup of the direct product of f(p —1)
copies of S}, and hence finite, arguments similar to those in Sections 4.4 and
4.5 give the following theorem.

Theorem 4.15 Let G = (R, D) be a special group as defined in Section 4.3.
If all defining sequences for elements of D are periodic, then G can be em-
bedded in a finitely presented simple group.

The following result is slightly more interesting.
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Theorem 4.16 For 1 < i < r let G, be a Grigorchuk group defined by
an fi-periodic sequence w; with values in {0,1,...,p;}. The direct product
Gy, X -+ x Gy, is embeddable in a finitely presented simple group.

Proof. Let n =3 p; and let

An ={a1,1,012, -+, 01, 5 Gr1,8r2,* , rp, }-

For 1 <i < rlet y; to be the permutation of A,, with cycle (a;1 aiz2...aip,)
and let o; = [f;] (see Section 4.3 for the definition of [f;]). Define e,, to be
the element whose only non-trivial columns are

a1 Qi,p;
Y and eqt ,
a1 Qip;

where & is once more the forget map (4.4). It follows as before that H =
(Gn,1,€0; |1 <14 <r) is finitely presented, and that #' is a finitely presented
simple group of finite index in H. It is clear from the definitions that the

group generated by the v; together with all egf for 0 < j < f; — 1 contains
an isomorphic copy of G, X --- x G, , where the o; are elements chosen
in a similar way to « before and satisfy egi = eyx. Observe that we have
‘enough room’ if r > 2 to do this for e,, as opposed to ey, - The theorem is
proved.
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THE ORDER PROBLEM

The goal of this chapter is to show that the groups H;;, have a solvable
order problem. Let us recall that a group has solvable order problem if given
any element one can effectively decide whether it has finite or infinite order.
Note that together with the solvability of the word problem this implies that
we can actually find the exact order of a given element, for once we know
that an element has finite order, we simply check for all its powers if they are
trivial. Clearly, having a solvable order problem is passed on to subgroups,
and hence H f,p' has a solvable order problem.

In the first section we establish some preliminary results. Then we introduce
flat symbols and step columns in Section 5.2, and combine the results to solve
the order problem in Section 5.3.

5.1 THE GROUP M

Recall from Section 4.4 the definition of the groups Ey;, and H, ; for f,p €
IN, and that + is the element of G, ; defined by the symbol

ay az -+ Gp-1 Gap
1 1 -~ 1 1 ]. (5.1)
as ag --- ap ai

Put C = () and note that it is a cyclic group of order p acting naturally
on {ai,...,ap} and hence on {1,...,p}. Also, recall that every element e of
Ef, has a symbol of the form

ar ag - ap_l ap
g 1 ... 1 € |, (5.2)
ay ag --- ap,1 ap

with 6 € C and € € Ef;,. Let M be the subgroup of G, generated by
C U Efp, then it follows directly from (5.1) and (5.2) that every element m
of M has an M-symbol of the form
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a1 ao e ap
mi mg - My (5.3)
Q1x Q2rx *°* GOpg

for some m € C. So we can define the following homomorphism

: M — M C

m > (my,...,mp)m, (5-4)

where m has the symbol (5.3). Since an element m of M lies in the kernel of
® if and only if m® = (1,...,1)1, i.e., its symbol defines the trivial element
of Gp,1, we see that ® is an embedding. Let p be the natural projection from
M C onto C and define ¥ = ®p.

Theorem 5.1 The group M as defined above has solvable word problem.

Proof. Since M is a subgroup of the E -expansible group H,,, M is also
E; p-expansible. So given m € M, find an Ef,-symbol A for m. This can
be done effectively using Proposition 3.7. Now m is trivial if and only if A
defines the trivial element of G, 1 which happens precisely when all columns
of A are trivial. As this can clearly be checked in finite time, the proof is
complete.

Theorem 5.2 The group M as defined above has solvable order problem.

Proof. The proof is by induction on the length [(m) of the element m € M
as a word in the free product of the groups Ef, and C. Every non-trivial
element of length one has order dividing p, by Lemma 4.9. Since conjugation
does not change the order of an element, we can assume m to have the
following form

die1dzep -+ Ope,, where d; € C\ {1}, e; € Epp \ {1}, 1 <i <.

We now consider two cases.

Case I: m € ker(¥) or equivalently 610 - -- 0, = 1. Then

571 -1 § 1)L
1 eg5152) ---6(61 On—1)

m = e n—1 €n

and m® is an element of MP, the base group of M C. Suppose m® =

(m,...,mp). It follows from (5.2) that each factor egél'"éi)_l contributes
at most one letter each to m; and hence I(m;) < I(m) for 1 < i < p. By

the induction hypothesis, we can decide the order problem for each m;, and
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therefore, the order problem for m. For it is clearly that m has finite order
if and only if each m; has finite order.

Case 2: m ¢ ker(¥) or equivalently 6102 ---6, = 6 # 1. Let ¢ be the order
of 6. Then m? € ker(¥) and

q 1 .
) -1 b 1)1 s—1 s
mi = Il(el1 e§‘51‘52) R ) )

n—1 n
i=0
Suppose m? = (m1,...,mp). If ¢ # p, then the two non-trivial components
o)1 . . . . . . .
of 6561 %7 lie in different d-orbits. This in turn implies that each factor
weel) s _1 . - . y . .
ez(-dl %) together with all its conjugates under §7, 0 < j < g—1, contributes

at most one letter to each mj, 1 < j < p. Hence [(m;) <I(m) for 1 <j <p
and we can refer to the induction hypothesis.

Assume now that ¢ = p and m? = (my,...,m,). From (5.2) we get that
each 6561"'&)71 together with all its conjugates under 6/, 1 < j < p — 1,
can contribute at most two letters to my for 1 < k < p. Hence I(my) <
2n = [(m). Note that all the my, are pairwise conjugate so that it suffices
to decide the order problem for any of the my in order to solve the order
problem for m. If for some k, 1 < k < p, I[(my) < 2n we plainly refer to the

induction hypothesis.

So let us speak of the worst case if actually I[(my) = I(m) for 1 < k < p.
In this case we apply the whole procedure to m; instead of m. If we find
ourselves again in the worst case, we obtain an mg, a component of m! of
the same length and so forth.

Suppose we always stay in the worst case and consider the resulting sequence
of elements m;, ¢ > 0, arising as described above. Observe that each m; is
conjugate (via an element of Ef, U C) to an element of the form

flfl"'fnfna (55)

where ¢, € C'\ {1} and f; € Ef, \ {1}. But there are only finitely many
elements of the form (5.5). This means m? = m, for some s < r € IN and
some € M, and we will find this after at most K = (p — 1)*(p/? — 1)"
steps. It follows from the procedure that mg’r_s and mg have the same
order. Hence, if m, is not trivial, mys and m have infinite order, and m
has finite order, if m; is trivial. As we can decide whether mg is trivial or
not, by Theorem 5.1, this solves the order problem for m, and the proof is
complete.
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5.2 STEP COLUMNS AND FLAT SYMBOLS

Here begins our investigation of particularly nice symbols. Flat symbols
play also a major role in Chapter 6.

Let A be a symbol and let C be a column of A. We call C a step column if
it is of the form

b bv
g or g
bv b

for some v € W,, \ {#}. Let M be defined as in the previous section. The
next lemma shows that for an element g of H, either all its M-symbols
have a step column or none of its M-symbols has a step column.

Lemma 5.3 Suppose the M-symbol A has a step column. Then every ez-
pansion of A has a step column, and every contraction of A which itself is
an M-symbol has a step column.

Proof. By possibly replacing A by A~!, we may assume that

b
C=| m
bv

is the step column of A.

We deal with expansions first. It certainly suffices to prove the statement
for simple expansions, and we only have to consider the case that C gets
expanded. Assuming that (mg,...,m,)n is the image of m under the em-
bedding ® (see (5.4)), C gets replaced by

ba; -+ bay
my .- my
bvai; -+ bvapg
Hence, if v = a;w, then
bai
m;
ba;(wair)

is the step column of the expansion.

To prove the statement for contractions we may restrict ourselves to simple
contractions which involve the column C. Assume

b ba;
C=| m | = m
bv bv'ay
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Then A must also contain columns

b'aj
mj
b'ajx
for 1 < j <p, j # i, and some permutation 7 of {a1,...,a,} with ir = 7"
Moreover, there must be m’ € M such that its image under the embedding
® is (my,...,Mi—1, M, Mjy1,...,mp)w for the resulting contraction, A’ say,
to be an M-symbol. But then
bl
m’ N
ba;v'

which is a step column as a;v' # () and the lemma is proved.

A symbol A is called flat if top(A) = bot(A). Observe, that if g is the
element defined by the flat symbol A, the combination A! exists for all
t € Z\ {0} and top(A) is a (g)-basis in the sense of Section 4.2. This
motivates the following definition(s) in which 7 is to be replaced by Ey,,
fake-Efp,, or M. Let g € Hyp. We call A a (g)-T-symbol if A is a flat
T-symbol for g. We also say g has a flat T-symbol if there exists a (g)-7-
symbol. Let us emphasise that being a (g)-7-symbol means in particular
being a 7-symbol for g, rather than just any element of (g).

Lemma 5.4 Let g € Hyp, then g has a flat fake-Ef ,-symbol if and only if
it has a flat M -symbol.

Proof. The only if part is trivial. Let us proceed with the if part. For
k € IN let L; denote the set of all words of length k£ in W,,. The lemma is
now an immediate consequence of

Lemma 5.5 For every m € M there exists K € IN so that for all k > K,
m has a flat fake-Ef ,-symbol A with top(A) = Ly.

Proof. 1t suffices to prove that there exists K € IN such that m has a
flat fake-E ,-symbol A with top(A) = Lk. For then, the result of simply
expanding every column of A is a (m)-fake-E,-symbol whose top row is
equal to Lg 1, by (5.1) and (5.2).

The proof is now by induction on the length I(m) of m with respect to the
generating set CUEf . By (5.1) and (5.2) again, the statement surely holds
if I(m) < 2 with K = 1. So assume I(m) > 2 and write m = m'z, where
z € CUE}f, and [(m') < I(m). Let T be the (m')-fake-Ey ,-symbol with
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top(I') = Lk for suitable K whose existence is guaranteed by the induction
hypothesis, and let 3 be a (z)-fake-E,-symbol with top(X) = L. Then
'Y exists and its middle row entries are elements of M of length at most
two. According to what was said above, the result of simply expanding
each column of I'Y is a (m)-fake-E -symbol A with top(A) = L. This
establishes Lemmas 5.5 and 5.4.

Let us also record the following useful criterion for finding a flat symbol.
Recall that for a finite family (B;);c; of bases of W,,, | |;c; B; denotes the
basis of the inescapable subspace (;c; BiW, of W,.

Lemma 5.6 In the following T may be replaced by Ey,, fake-E;, or M.
Let g € Hpp, 0t € IN, and assume that Aq,...,A; are T-symbols for g
such that the combination A1 --- Ay exists. If ' is the symbol for g with
top(T') = LI'_; top(4A;), then T is a T-symbol and T is flat if and only if
top(A1) = bot(Ay).

Proof. Put B = | |t_, top(4;), let T be the symbol for g with top(I') = B

and let
b

T
Cc

be a column of I'. By Lemma 1.1b) and Lemma 1.4, this is also a column
of one of the given symbols, say of Aj, so in particular I' is a 7-symbol and
¢ € bot(A;). Since b € B, we have b € top(A;)W,, for each 4, so that g has
the columns
biv; =0b

Z; )

w;
where b; € top(A;), and consequently w; € bot(A;)W,. By Lemma 1.4
again, all w; are equal to ¢, whence ¢ € N}_; bot(A;)Wp. It follows from
Lemma 1.1¢) that ¢ € |'_; bot(4;). Assuming top(A;) = bot(4;), it
follows that B = ||'_; bot(4;), and hence ¢ € B, so I' is flat. On the
other hand, if T is flat, we have B = bot(I") C | J¢_; bot( i), which implies
B=]_, bot( ;), as both, B and | |'_, bot(4A;), are bases. This proves the
lemma.

An easy consequence of this is a characterisation of elements of finite order
inHyp.

Proposition 5.7 The element g of Hyy, has finite order if and only if it
has a flat Ey ,-symbol.

67



CHAPTER 5

Proof. If A is a flat Ey,-symbol for g then it is clear that ¢*'P = 1, where
s is the number of columns of A. This is because Fy, is an abelian group
of exponent p (Lemma 4.9). For the converse assume that g' = 1 and we
are given Ey,-symbols Aq,..., A; for g such that the combination Ay --- A
exists (#, is Er ,-expansible, by Lemma 4.9). This combination is a symbol
for the trivial element and thus top(A;) = bot(A;). By Lemma 5.6, the
symbol I' for g with top(I') = | |'_; bot(A;) is a (g)-Ey,-symbol, and the
proposition is proved.

5.3 SoLviNG THE ORDER PROBLEM

Our aim in this section is to establish the following dichotomy.
Proposition 5.8 For g € Hy, one of the following holds.

(i) There is a flat fake-Ep,-symbol for g, or

(ii) for some t € IN, g has a step column.
First we show that it implies
Theorem 5.9 The order problem for Hp, is solvable.

Proof. First we show that we can decide in finite time which of the two
cases of the proposition holds. So let g € H;, be given. If it is given to us
as a word in the generators, we can effectively compute an M-symbol for g,
since we can execute simple expansions effectively by (4.6). So we might as
well assume that we are given an M-symbol A. In case g satisfies (i), g also
has a flat M-symbol I" such that I is an expansion of A, by Lemmas 5.4 and
6.1. Hence, checking all expansions of A, say simple expansions first, then
simple expansions of the simple expansions an so forth, will eventually reveal
a flat M-symbol. If, on the other hand, g satisfies (ii), then the following test
works: compute symbols Ag, As, ... for g%,¢%,... and check them for step
columns. By Lemma, 5.3, it does not matter which particular M-symbol A;
for g' we have computed, so the procedure stops. Thus, running both tests
simultaneously, one of them will stop, by the proposition, as required.

To complete the proof we note first that an element g with a step column
has infinite order, for otherwise there would be a flat E,-symbol for g,
by Lemma 5.7, which contradicts Lemma 5.3, by which every symbol for
g has a step column. Now suppose g has a flat fake-E,-symbol A. Then
for every column of A? the top and bottom row entries are equal, where
t = |top(A)|!. So g has finite order if and only if all the middle row entries
of Al are periodic which we can decide by Theorem 5.2. This completes the
proof of the Theorem.
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The proof of the proposition that follows is close to Higman’s proof for the
solvability of the order problem for G, . But to make those arguments work
we need to extend the domain of the elements of Ef ;. As mentioned before,
the group Ey, can be described as a group of tree automorphisms of the
tree Wp, and we adopt this point of view here. More precisely, for e € Ey,,
and w € W), define

e w®, if w® is defined
w, otherwise

A glance at the definition of e(= b,) in Section 4.3 shows that e — €
is a well define injection from the group Ey, of maximal inescapable iso-
morphisms into the automorphism group of the tree W, (see Section 1.5).
Moreover, this definition is compatible with expansions in the sense that for
every fake-E ,-symbol A for e the restriction of € to the subspace top(A)W),
is the same map as the one defined by the symbol obtained from A by ‘bar-
ing’ all middle row entries. Here we are assuming that we have also extended
the action of vy by setting (7 = 0.

For the remainder of this section we omit the bars and assume that elements
of M act as tree automorphisms.

Remark. The point is that, contrary to the situation for inescapable iso-
morphisms, (bw)? is now defined for all w € W), and b € top(A), where A is
any M-symbol for g. But it is no longer true that for v = wz, (bv)? = (bw)9z.
However, we still have (bv)? = (bw)92' for some 2’ € W), of the same length
as z, because middle row entries preserve this length (automorphisms of a
rooted tree have to fix the root).

From now on g is an arbitrary but fixed element of H;,. We call a basis B
benign (for g) if it is finite and w9 and w9 are defined for all w € BW,,.
Note that every expansion of a benign is also benign.

Lemma 5.10 There ezists a benign basis B such that, for every w € BW)
there is e € {£1} with w9 € BW, for all t € IN.

Proof. Let B be a benign basis and put U = BW),. For u € U define the
quasi-orbit O(u) of u as follows. Let s < 0 be minimal subject to u9° € U
for all k with s <k <0ors=—ooifud €U forall k <0, and let £ > 0
be maximal subject to u9" € U for all k with 0 <k<tort=ooif ud €U
for all K > 0. Then O(u) = {ugk |s < k <t}. Wesay u is of finite type if
both s and ¢ are finite, and in that case u9" and u9" are called ends of O(u).

Observe that B satisfies the lemma if there are no elements in U of finite
type and that O(v) = O(u) for all v € O(u).

Let us show that there are only finitely many elements of finite type in U.
Let v be an end of O(u), then v9° € W), \ U for some ¢ € {1} and we say
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v9" is an ezit of O(u). It is straightforward that each element of W, \ U
is the exit of at most two different quasi-orbits. Since W, \ U is finite and
every quasi-orbit of finite type is finite and has an exit, there are only finitely
many elements of finite type in U.

Now assume that u is of finite type and write u = bv with b € B and v € W),.
Then b is also of finite type, since b9" < u9" for all k such that 59" is defined.
Let C be the simple expansion of B at b and note that C'W),, has the same
elements of finite type as U but b. Hence, by induction on the number of
elements of finite type, there is a benign basis D such that D has no elements
of finite type, and the lemma, is proved.

A benign basis satisfying Lemma 5.10 is called a normal basis (for g). Ob-
serve that the proof of the lemma gives an effective procedure for finding a
normal basis and, moreover, that every benign basis has a normal expansion.

Proof of Proposition 5.8. Let B be a normal basis for g such that g has
an M-symbol with top row B. Suppose b € B such that O(b) finite. Then
we claim that b9° € B for all i € Z. For otherwise there is b’ € O(b) such that
b9 = b'v with b” € B and ) # v € W, and hence b = (b'v)9 = b9 v/
for some () # v’ € W), since B is benign. This implies 9! ¢ BW, which
force O(b") to be infinite, as B is normal. It follows that O(b) must also be
infinite, a contradiction. Thus, the M-symbol for g with top row B is flat if
all elements of B have finite quasi-orbits. So (i) holds , by Lemma 5.4.

Now assume that O(b) is infinite for b € B. By possibly replacing g by g~*

we can assume that b9 € BW,, for all i > 0. Define #(b) to be the maximal
integer subject to bfi ¢ B for 0 <i < t(b) and let b= b9"" (£(b) exists since
B is finite). Then b = bjv; for some by € B and () # v1 € W). As before,
b‘{_l ¢ BW),, and O(by) is infinite, since it is not of finite type (B is normal).
In particular, bslf € BW, for i > 0. Iterating this argument we get b, € B
with bv; = b7\_1, v; € Wp, and, as B is finite, we find j > 0 with § < k and
b; = by, where by = b. For 1 <4 <k — 1 put ¢; = ¢(b;) and check that

bgtj+tj+1+"'+tk_1

j = (bjprx)? T

= (bj+2*)gtﬂ'+2+"'+t’°—1

— (bkfl*)gtk_l
= bj*

where the * is to be replaced by some non-empty element of W,,, possibly
varying from line to line. It is now clear that glitti+1+t+%k-1 has a step
column, and the proof of the proposition is complete.

As all the steps of this proof can be carried out effectively, we get immedi-
ately
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Corollary 5.11 For g € Hy, it is effectively decidable whether g has a flat
fake-Ef ,-symbol.
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THE CONJUGACY PROBLEM

This chapter is the outcome of an attempt to solve the conjugacy problem
for the groups #,, r. A group has a solvable conjugacy problem if given two
arbitrary elements one can effectively decide whether they are conjugate in
the group. Since an element is conjugate to the identity if and only if it is
the identity, the solvability of the conjugacy problem implies the solvability
of the word problem. However, we cannot give a complete solution but
we prove an affirmative answer for elements that have flat symbols. This
includes all elements of finite order (Proposition 5.7) and in addition some
elements of infinite order. Since this involves already quite a lot of notation
even in the case where p is a prime and gets considerably more complicated
if p is not prime, we assume from now on that p is a prime. This restriction
is most important in Section 6.6.

6.1 PSEUDO-ORBITS AND THEIR CHARACTERISTICS

Here we investigate flat fake-FE ,-symbols in greater detail. Although this
notion came up earlier, it was mainly developed to treat the conjugacy
problem, and hence it appears in this chapter.

Let A be a (g)-fake-Ey,-symbol (this includes being a (g)-E,-symbol).
Then there is a well defined permutation 7, (A) of top(A), given by b™(4) =
¢, where

b

x

c

is a column of A. We call the orbits of 74(A) in top(A) pseudo-orbits of
g- We also let 74(A) permute (the set of columns of) A according to their
top-entries. For convenience, we think hereafter of a symbol as a set of
columns, so that we may speak of the pseudo-orbits of g in A. Since such a
pseudo-orbit O is again nothing but a set of columns, we will usually denote
it by
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or 02 *+ Ot-1 O
T Ty - L1 Ty |- (6.1)
02 03 ' O¢ 01

Let PS(A) denote the set of pseudo-orbits of A, having in mind that this
requires A to be at least a flat symbol. But we will only deal with flat
M-symbols in the sequel.

Convention. It is now convenient to distinguish a word over the alphabet
C U Ey, from the element of M it represents. We have to be even more
rigorous, and take elements of the free product C * E's ;, into account as well.
Ifw=xy-- -z, is a word over C' U Efp, i.e., z; € C U Ey,, we write w for
the element of M it represents. By [(w) we denote the length of w as an
element of C'* E 5, i.e., we lump together consecutive occurrences of letters
of the same factor and.

Suppose now O € PS(A) is given by (6.1). We define the characteristic of
O, denoted x(QO), to (be the word) z1z9---x;. And define the trace of the
pseudo-orbit Oby

. 0, if:EliL‘Q"'.z‘t:l
tx(0) = { 1, otherwise.

Note that the definition of x(O) depends on the choice of 0; and that, for a
different choice of 01 the characteristic is a cyclic conjugate x; - - - ;21 -+ - T;—1
of x(O). In contrast, the characteristic is independent of that choice. It also
makes sense to say that O has finite (infinite) characteristic if x(O) has
finite (infinite) order. Similarly, we say that x(O) lies in the kernel of ¥ if
x(O) does, where ¥ is the homomorphism defined just before Theorem 5.1.
It is clear that all these latter definitions are independent of the choice of
01. But they depend heavily on the intrinsic order that is determined by
the cycle structure of 7y(A).

Let O be a pseudo-orbit of A. By a simple pseudo-orbit expansion of A at O
we mean the resulting symbol after simply expanding A at all columns of O
(a subset of A). And as before, we say that I is a pseudo-orbit ezpansion of
A if there are finitely many symbols Ay, ..., Ag such that A = Ay, T' = Ay
and A; is a simple pseudo-orbit expansion of A;_; at some O € PS(A;_1)
for 1 <3 <k.

Lemma 6.1 Suppose g € Hyp has a flat fake-Eyp-symbol. Then g has a
unique minimal flat fake-Eyp-symbol A, in the sense that every other (g)-
E;p-symbol T' is an expansion of A. Moreover, every such T' is in fact a
pseudo-orbit expansion of A, and conversely, every pseudo-orbit expansion
of A gives such a I'. Consequently, g has arbitrary large flat fake-Ej -
symbols.
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Proof. Suppose I't and I'y are two (g)-fake-E,-symbols and top(T'y) #
top(I'2). We may now assume that there is 0, € top(I'1) with o, ¢ top(I'a) W).
Let O be the pseudo-orbit in I'; containing o;. Then it is clear that for every
o € top(0), o ¢ top(I'e)W,,. Let

U = {C € T'y|top(C) € top(I'2) Ntop(O)W,}

and observe that I's = (I'o\U/)UQ is a (g)-fake-E ,-symbol and a proper con-
traction of I's. Therefore, the assumption that both I'y and 'y are minimal
gives a contradiction, and hence there is a unique minimal flat fake-E -
symbol for g. The second part of the lemma follows from the obvious fact
that for every proper non-empty subset J of {1,...,t} the result of simply
expanding all columns with top entry oj, j € J, of the pseudo-orbit (6.1)
does not lead to a flat fake-E's ,-symbol. This proves the lemma.

6.2 CONJUGATE FLAT SYMBOLS

Here we gather some obviously necessary conditions for elements with flat
fake- ¢ ,-symbols to be conjugate. Assume that g and h are elements of a
single conjugacy class of Hy ,, say z~ gz = h for some z € H #.p» and that g
has a flat fake-E;,-symbol. Since Hy, is Ef -expansible (Lemma 4.9) we
find Ey;-symbols 3, A, A, and T for 71, g, z, and h, respectively, such that

SAA =T. (6.2)

Recall that each (simple) expansion of a fake-Ej ,-symbol is again a fake-
E; p-symbol and, that for every combination Ay --- A, of fake-Ef ,-symbols
and given expansion I'; of A;, there are expansions I'; = A;, 1 <j#¢ <,
so that I'; --- A, exists, by (5.1) and (5.3). By our assumptions, it is now
possible to do the following: expand (6.2) so that the symbol for g becomes
a flat fake-E's ,-symbol. The obtained combination is of the form

YIAY =T, (6.3)

where T is a fake-E -symbol for h, A is a (g)-fake-E ,-symbol, and X is a
fake-E'¢ ;,-symbol for z. It follows that I' is in fact a flat fake-E ,-symbol.
Let (6.1) be a pseudo-orbit, O say, of g in A and let

wyp w2 - W1 Wt
-1 -1 -1 -1
Y Yo oY1 Y
01 02 - Ot-1 Ot
z1 T2 o Tt-1 Ty
09 03 e O¢ 01
Y2 Yys - Yt n
wo w3 s (v w1
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be the corresponding part of the left hand side of (6.3). Then

wi w2 W1 w
—1 —1 —1 -1 64:
Y1 T1Ye Yo T2Y3 Yy 1Tt—1Yt Yp TtY1 (6.4)
wo w3 wy wy

is a pseudo-orbit, U say, of h in I'. Moreover, the characteristic of U/ is
Y 1X((’))yl. In particular, & has finite characteristic or lies in the kernel
of ¥ if and only if O has finite characteristic or respectively lies in the
kernel of W. Also note that the y; are elements of the finite set Fy, U
C. Thus, given a flat fake-Fy ,-symbol 2 for g, we can list in finite time
all possible characteristics of pseudo-orbits of elements conjugate to g such
that € occurs in the corresponding combination of fake-F ,-symbols. This
should make clear that we have to investigate the behaviour of pseudo-
orbits under pseudo-orbit expansions if we seek a solution to the conjugacy
problem. This is precisely what follows.

6.3 PSEUDO-ORBIT EXPANSIONS

Let A be a flat fake-E,-symbol and let O € PS(A). We say that O is of
class Iif x(O) lies in the kernel of the homomorphism ¥ : M — C defined
just before Theorem 5.2, and of class II otherwise.

Lemma 6.2 Let A be a (g)-fake-Ey,-symbol and O € PS(A). Suppose T’
is the simple pseudo-orbit expansion of A at O and x(0)® = (m4,...,m,)T.
Then we can order the columns of I' so that I has the same pseudo-orbits
as A except for O which gets replaced by pseudo-orbits O; according to the
following two cases.

1. If O is of class I, then 1 < i < p, x(0;) = mi, and |O;| = |O|.
2. If O is of class II, then i = 1, x(O1) = mimig -+ Myw-1, and |O1] =
p|O].

Moreover, [(x(0;)) < l(x(O)) for all i in question and with strict inequality
in the first case.

Proof. Suppose O is given by (6.1) and =2 = (z;1,...,7;p)o; for 1 <i < p.
Put m; = 01---0, 1 <1 <t and observe that m = 7, so m¢ = 1 if and only
if O is of class I.

Suppose first that O is of class I. Then it follows from the correspondence
between ® and symbols for elements of M (see (5.3) and (5.4)) that the
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result of simply expanding all columns of O contains

0144 02Qi7y  * OtQ4my_4
T, T2imy  *t Ttimq
0204z,  03Qjmy 01a;

for 1 <4 < p. This is clearly a pseudo-orbit, O; say, and its characteris-
tic is @1,;T2,ir, - Tt,ir,_, Which is soon shown to be the i-th component of
(z129 -+ 14)®. Clearly, |O;| = |O|.

Assume now that O is of class II, i.e., m; # 1. Then the result of simply
expanding all columns of O is

0101 02017, e otalm_l e olaiﬁfq e Otalﬁf_lm—l
i1 T21m ctt Ttdm e Tigap=t 0 gl |
0217, 03Q17y **° 01017, e 020'1”5’*171-1 ot 0141

which is a pseudo-orbit of cardinality p|O| and with characteristic
T1,1T2,1m " Ttlmp—q """ ‘xl,lwf_l e ‘xt,lwf_lwt_l'
The claims about the relations between the characteristics of @ and its

expansion follow immediately from our assumption on z" and the following
computation.

-1 —1
(.'L'l.’EQ s CEt)q) = (-'I»'l,la e ,3:1’1,)(.%2,1, e ,.’EQ,p)ﬂ-l s (-Tt,la . ,xt,p)wt—lﬂ't
= (-7;1,15 s 7x1,p)(w2,17r11 s 7$2,p71'1) e (xt,lﬂ't_n s 7xt,p7'l't_1)7rt
= (Z10%2,1m; * Bdm g5 -+ TLpT2pm = Ttpmy_1 )T

Finally, the statement about the length of the characteristics follows from
the corresponding statements in the proof of Theorem 5.2, by noting that
MMy -+ Mygp—1 is the first component of ((m1,me, ..., my)m)P. This proof
of the lemma is complete.

6.4 NORMAL SYMBOLS

For the flat fake-Ej,-symbol A, define

FPS(A) ={0 € PS(a) \ \W\ <oo} and

IPS(A) = {0 € PS() ‘ ‘m‘ =o0}.

These two sets are effectively computable from A, by Theorem 5.2. We call
A a normal symbol for g, if it is a (g)-fake-E;,-symbol and, in addition,
satisfies the following condition
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(N) For every expansion I' of A which is also a flat fake-E ,-symbol and
for all O € IPS(I'), O is of class II.

Note that (N) is also a condition for A itself since A is trivially an expansion
of A.

The reason for this definition is that we would like to write a flat fake-FEy -
symbol A for g as the combination of two flat fake-E ,-symbols Ar, Ar; the
former containing only pseudo-orbits with finite characteristic, and the latter
having only pseudo-orbits with infinite characteristics and trivial columns.
This decomposition will define two elements gr and g; in a natural way, the
only trouble is that this definition is not independent of the choice of the flat
fake-E -symbol. As a pseudo-orbit with infinite characteristic can lead to
a pseudo-orbit with finite characteristic under pseudo-orbit expansions (see
the example below). We show in Lemma 6.3 that for a normal symbol for
g this will be well defined. Let us first give an example of a flat fake-Ey ;-
symbol which is not normal.

Example. Consider the group Hz2 and let w, o, and 7 be the 2-periodic
sequences with periods 11, 10, and 01, respectively. Then it is an easy exer-
cise application of Theorem 5.2 that b, and b,y have infinite respectively
finite order. Suppose

01 02 03 04
0= bo v by 7

02 03 04 01

is a pseudo orbit of a flat fake-E,-symbol A for some element of ;.
Since (byyby,y)® = (vby, br7y), we have that O of class I and hence A is not
normal. Note that O has infinite characteristic. By Lemma 6.2 and the
usual expansion rules, in the simple pseudo-orbit expansion of A at O, O
leads to

0141 02a1 03a2 0402 0142 02G2 0301 0401
0, = y 1 by 1 and Oy = b, 1 y 1
0201 0342 0442 0101 0202 0301 04G1 0102

Observe that O1 has infinite characteristic, whereas Q9 has finite character-
istic.

The following lemma says that for a normal symbol the pathology of the
above example cannot occur.

Lemma 6.3 Let A be a normal symbol for g € Hyp, and let T' be a pseudo-
orbit expansion of A. Then the following hold.

a) T is a normal symbol for g
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b) IfU € FPS(T), then top(U) C top(O)W,, for some O € FSP(A).

Proof. To see a) it suffices to note that I' is a (g)-fake- £y ,-symbol satisfying
(N), since all its pseudo-orbit expansions are also pseudo-orbit expansions of
A. To prove b) it suffices to consider simple pseudo-orbit expansions of A.
By case 2 of Lemma, 6.2, a pseudo-orbit of class IT with infinite characteristic
leads to precisely one pseudo-orbit with infinite characteristic under a simple
pseudo-orbit expansion, and condition (N) forces this pseudo-orbit to be of
class IT again. so U cannot be the expansion of a pseudo-orbit of class IT with
infinite characteristic, and the lemma is proved. The existence of normal
symbols is our next task.

Proposition 6.4 Suppose g € Hy, has a flat fake-Ej ,-symbol. Then g has
a normal symbol.

Proof. Let us start with a verbal version of Lemma 6.3 b): for every pseudo-
orbit expansion of a normal symbol, pseudo-orbits with finite characteristic
can only come from pseudo-orbits with finite characteristic. From the proof
of that statement it is clear that only pseudo-orbits of class I with infi-
nite characteristic may lead to ‘new’ pseudo-orbits with finite characteristic.
In this case, the length of the characteristic of the new pseudo-orbits is
strictly smaller than the length of the original characteristic, by Lemma, 6.2.
Therefore, new pseudo-orbits with finite characteristic, in the sense that
they come from a pseudo-orbits with infinite characteristic, cannot occur
infinitely many times in the process of performing simple pseudo-orbit ex-
pansions at pseudo-orbits with infinite characteristic over and over again.
We will know when to stop, when we find that two expansions of the same
pseudo-orbit with infinite characteristic have equal characteristics, which
must happen by the arguments in the proof of Theorem 5.2. The proof is
complete.

6.5 THE CONJUGACY PROBLEM: I

Having normal symbols at hand, we show here that we can divide the con-
jugacy problem for elements with flat symbols into two parts: those with
pseudo-orbits of finite characteristics on the one hand, and those with either
trivial columns or pseudo-orbits of infinite characteristics on the other hand.
The latter part is easier and proven to be solvable also in this section. First
we need to introduce more notation.

Let A be a normal symbol for g. Define

top(A); = {top(C) |C € O € IPS(A)},
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top(A) » = {top(C) |C € © € FPS(A)},

b
Ar=( | ou 1 | |b€top(A),
Qerps(a) b
and
b
Ar=( (U Ou 1 | |betop(A),
OecFPS(A) b

Remark. Note that top(A); and top(A), are disjoint with union top(A),

and that bot({C |top(C) € top(Ax)}) = top(Ax) for X = F,I. Hence Aj
and Ap are well defined. It should be clear that Ar defines a periodic
element, whereas A; defines an element of infinite order.

Lemma 6.5 Let A be a normal symbol for g € Hy, and let gr and gr
be the elements defined by Ap and Ajp, respectively. Then gr and g; are
independent of the choice of the normal symbol A and g = g19r = grg;.

Proof. A similar proof to that for Lemma 6.1 shows that there is a unique
minimal normal symbol A for g such that every other normal symbol for g is
a pseudo-orbit expansion of A. In fact every pseudo-orbit expansion I' of A
is a normal symbol for g, by Lemma 6.3, which also shows that top(I'), C
top(A) pW,. Together with top(I'); C top(A),;W, which obviously holds,
we get I'r = Ap and I';y > Aj;. Hence I'p is a symbol for gr and T’y
is a symbol for g;, whence the definition of gr and g; are independent of
the choice of normal symbol A for g. It is plain from the definitions that
g = 919Fr = grgs, and the lemma is proved.

Proposition 6.6 Assume g,h € Hy, have flat fake-E,-symbols. Then g
and h are conjugate in Hyp if and only if gr is conjugate to hg and gr is
conjugate to hy.

Proof. First suppose that, for some = € Hj ), z gz = h is a relation in
Hsp. Now g and h have normal symbols, by Lemma 6.4, and, by Lemma
6.3a), we can expand (6.2) so that ©~!AY = I" holds, where A and I are
normal symbols and ¥ is a fake-F ,-symbol. It follows by what was said
about the characteristics after (6.3) that X"'Ap% = 'r and 1A% =T.
Thus gr is conjugate to hr and gy is conjugate to hy, by Lemma, 6.5.

For the converse assume that = 'gpz = hr and y~'gry = h; hold in Hip
for some x,y € Hp. Then there are fake-Ey ,-symbols X, A, A, and I for
z, Y, g, and h, respectively, such that

YIARY =Tp and ATTAA =T
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Define the essential parts of 3 and A to be the following collections of
columns
Ye = {C € 2|top(C) € top(A)r}

and
Ae ={C € A|top(C) € top(T)p}.

By the remark preceding Lemma 6.5, top(X.) and top(A.) are disjoint,
top(Ze) U top(Ae) = top(A), top(Xe) = bot(X.), and top(Ae) = bot(Ae).
Hence Q = ¥, U A, is a fake-FE ,-symbol and it is easy to check that the
combination Q' AQ exists and is equal to I'. This proves the Proposition.

We end this section by showing that we can decide whether g; and h; are
conjugate. In the following sections we tackle the considerably more difficult
task to decide whether gr and hr are conjugate. One further definition is
required. For a,b,7 € IN, we write a =*b (mod r),ifa =b (mod r) and
a =0 if and only if b = 0.

Proposition 6.7 Let g and h be elements of 1y, which have flat fake-Ef ;-
symbols. Then it is decidable whether g; and hy are conjugate.

Proof. First recall the definition of the trace of a pseudo-orbit (p. 73).
For a flat fake-Ef -symbol X, let ¢£(X) be the number of pseudo-orbits of
¥ with trace zero (frivial trace) and nt(X) the number of pseudo-orbits of
>} with trace one. Suppose gr and h; are defined by Ay respectively I'y,
where A and I" are normal symbols for g and h. Assume for a moment that
¥ is a pseudo-orbit expansion of A;. Then nt(X) = nt(Ar) and tt(X) =*
tt(Ar) (mod p — 1), by Lemma 6.2 and condition (N). Hence we see from
the discussion in Section 6.2 that the following three conditions are necessary
for g;r and h; to be conjugate.

1) nt(Ar) = nt(T'y)
2) #(A7) =* t#(T;) (mod p — 1)

3) There are suitably ordered pseudo-orbit expansions A’ and I'; of A;
respectively I'r and elements y1,...,y, € Ef, U C such that, for suit-
able listings of their pseudo-orbits O, ..., O, respectively Uy, ..., U,,
x(0;)¥ = x(U) for 1 <7 <7, where r = nt(A).

That these conditions are also sufficient is a consequence of the first part
of Lemma 6.2, which together with condition 2) implies that we can choose
A’ and T, with the same number of trivial columns, and the fact that every
fake-E ,-symbol defines an element of H,. Let us show how to check in
finite time whether these three conditions are satisfied by the given Ay and
I';. Clearly, we only need to check condition 3) in case 1) and 2) hold already.
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We claim that there is a finite subset S of M so that for every pseudo-orbit U
of any pseudo-orbit expansion ¥ of Ay, x(U) C S. This follows from the last
statement of Lemma 6.2 by which the length of all possible characteristic
of such U are bounded. Now we are left to check finitely many things to
find whether condition 3) can be satisfied, since there are only finitely many
pseudo-orbit each with only finitely many possible characteristics for its
expansions, which can be cyclically reordered in finitely many ways, and
only finitely many elements to choose the y; from. The proof is complete.

Remark. It is worth noting that until now we have not used our assumption
that p is a prime.

6.6 LEGAL SYMBOLS AND THEIR INDEX

Now we deal with the question whether gr and hr are conjugate for given
elements g and h of H;, which admit flat fake-E ,-symbols. In other
words we attack the conjugacy problem for elements of finite order which,
by Proposition 5.7, are precisely those elements with a flat E ,-symbol.

Call A is a legal symbol for g if it is a (g)-fake-E ,-symbol and an expansion
of a flat Ey)-symbol for g. In particular, an element of H;, has a legal
symbol if and only if it has finite order. The following result divides the
pseudo-orbits of legal symbols into two genuinely different classes. Recall
that C = (vy), where  has the symbol (5.1).

Lemma 6.8 Suppose I' is a legal symbol for g € Hyp.  Then for each
pseudo-orbit O of g in T one (and only one) of the following holds.

I) All middle row entries of O belong to C.

ITI) One of the middle row entries of O belongs to Ey,\{1}. Furthermore,
in this case all middle row entries of O are in Ey;,. Consequently, the
characteristic of O is independent of the order of the columns of T'.

We will speak of pseudo-orbits of type I or II depending on which statement
of the lemma they satisfy and we denote the type of O by ¢(O).

Proof. First of all, note that every flat E ,-symbols satisfies the dichotomy
of the lemma. As I' is a pseudo-orbit expansion of some Ef,-symbol, it
suffices to check that a simple pseudo-orbit expansion of a flat fake-Ey -
symbol that satisfies the lemma also satisfies the lemma. This can be seen
from Lemma 6.2 as follows. If a pseudo-orbit is of type I, then all the z; ;
in the proof of that lemma are trivial, so all the resulting pseudo-orbits are
of type I again. If, on the other hand, a pseudo-orbit is of type II, then
it is of class I, and all the =; are trivial. It follows from (4.6) that only

81



CHAPTER 6

middle row entries from either Ey, or C contribute to the characteristic of
resulting pseudo-orbit. The final statement follows because Ey ), is abelian,
by Lemma 4.9, and the lemma is proved.

It is convenient to introduce the following terminology for the legal symbol
A. The rank of A, denoted r(A), is given by

r(A) = |PS(A)).
For O € PS(A), we define the indez i(O) of O by
i(0) = (x(0),0]),

and we call the unordered tuple

{i(o)}OGPS(A)

the indez of A which we denote by 7(A). A closer inspection of the proof of
Lemma 6.8 easily gives the following result.

Proposition 6.9 Let A be a legal symbol for g. If ' is the result of the
simple pseudo-orbit expansion of A at O € PS(A), then the following hold.

_ r(A), if 1#x(0)eC
a) r(I') = { r(A)+p—1, otherw>icse

b) i(T) is obtained from i(A) by deleting i(O) and adding

(i) (1,¢p), if i(O) = (d,¢) with 1 #d € C, or
(ii) p times (1,¢), if i((O;) = (1,¢), or

(iii) p — 2 times (1,¢), (6,¢) and (€/,c), in case i(O) = (e,c), 1 # e,
and e has the symbol (5.2).

In particular, the number of pseudo-orbits of g of type 11 with non-trivial
characteristic is independent of the chosen legal symbol for g.

The index of a legal symbol allows a first necessary and sufficient criterion
for period elements to be conjugate.

Proposition 6.10 Let g,h € Hyp be elements of finite order. Then g and
h are conjugate in Hy, if and only if there are legal symbols A and T' for g
respectively h, such that i(A) = i(T"), i.e. there is a bijection a : PS(A) —
PS(T) with i(0O%) =14(0O).
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Proof. First assume z~ 'gz = h is a relation in H tp- Doing a few expan-
sions we may assume that we are in the situation of Section 6.2 with A
and T' of (6.3) being a flat Ey,-symbol and a legal symbol, respectively.
Obviously |U| = |O|, so once we establish x(O) = x(Uf), A and T clearly
have the same index. By Lemma 6.8 and the form of A and I', we know
x(0) € Efy, x(U) € C U Ejy and that x(U) is independent of the order of
multiplication. But from (6.4), x(U) = x(O)¥% for 0 < i <t — 1. Surely, we
may now assume x(O) # 1. From the definition of C and Ef ), we see that
y; € Efp for 0 <7 <t —1. Since Ey, is abelian we get x(0) = x(U), as
required.

For the converse, let A and I' be legal symbols for g and h, respectively,
with §(A) = 4(T'). For 1 <j <r(A), let O and OF be given by

Olaj e Ot] -1, Ot] »J wlvj T wtjilvj wt] »J
Tij o Ty-1y Ty | oand |z 210 2
021j e Otj J Olyj 'LUQ"]' T wt.] J wlvj

respectively. Now define for 1 < j < r(A) the following elements of M
inductively, 1 ; = 1 and y;11; = :vi_’jlyi,jzi,j for 1 < ¢ < t; — 1. Finally, let
k € Hyp be the element with M-symbol

T(A) 0; 4
¢= Yij || 1<i<t
i=1 Wi,

(Observe that every M-symbol defines an element of #¢,.) Having in mind
that z1; -z, j = x(O)) = x(O|%) = 21,5+ 21,5, it is now straightforward
to check that ' A® exists and is equal to I'. This completes the proof of
the Proposition.

6.7 THE CONJUGACY PROBLEM: II

Before we turn to the main result of this section we need yet more notation
and describe some reductions. Let A be a legal (g)-fake-E -symbol, then

. T (A) _ . .
lg] = { p|mg(A)], if A™9(?) has pseudo-orbits with trace one (6.5)

|mg(A)], otherwise.

Remark. This is the first time we use that p is a prime.
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For each divisor d of the order of g we define

Ng(A) ={0 € PS(A)[i(0) = (1,d)},

Fy(A) ={0 € PS(A)|i(O = (4,d),1 # 6 € C},
My(A) ={0 € PS(A)[i(0) = (e,d),1 # e € Eyp},
() { INg(A)| + [Fyyp(A)], if p divides d

|Ng(A)], otherwise,
mg(A) = |Mg(A)|, and finally
d —type(A) = {x(O)}Oerya)

by which we mean an unordered mgy(A)-tuple. We chose this notation be-
cause we distinguish normalised and fake pseudo-orbits of type I and pseudo-
orbits with non-trivial characteristic in the group Ey;, C M. Let us call A
a legal expansion of A, if Aisa legal symbol and also an expansion of A.

Assume now that we are given g, h € H, of finite order. First we find (g)-
and (h)-Ef,-symbols A and T, respectively. Note that this can be done
effectively (see proof of Proposition 5.7). By Proposition 6.10, it suffices
to give an effective procedure which decides whether there are A’ and TV,
legal (g)- and (h)-fake-E p-symbols, respectively, such that i(A’) = #(T”).
In addition, we may assume that A’ and I' expand A and I, so that all
possible indices of such A’ and I can be effectively computed from those of
A and T', by Proposition 6.9.

The following conditions are clearly necessary because they are invariant
under simple pseudo-orbit expansion, by Proposition 6.9.

1) lgl = |
2) r(A)=r(') (modp-—1)
3) mgy(A) = my(T) for all divisors d of |g|

These conditions can obviously be checked. Furthermore, since E} ), is finite,
there are only finitely many possibilities for the d — type of a legal expansion

of A, and similarly for I'. Therefore, by Proposition 6.9 b) (iii), we can also
check if the following condition can be met.

4) There exist legal expansions of A and I" with the same d — type for all
divisors d of |g|.

Recall that ¢ =* b (mod r) if a = b (mod r) and a = 0 if and only if
b = 0. We proceed with the following weakening of Proposition 6.10.
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Lemma 6.11 Suppose A and T satisfy the requirements 1) — 4). Then g
and h are conjugate in Hy, if and only if

5) ng(A) =* ng(T')  (mod p — 1) for all divisors d of |g|.

Proof. Only if follows directly from Proposition 6.10. We prove the if
direction. By Proposition 6.9 b) (ii), it is clear that A and I' have legal
expansions A’ and TV with ng(A") = ng(T") for all divisors d of |g|. From
Proposition 6.9 b) (i) and the definition of ngy we see that we can expand A’
and T" further to obtain A and I' with ng(A) = ng(T") and Fy(A) = Fy(I) =
() for all divisors d of |g|. Since all these expansions leave the d—type fixed, it

follows that i(A) = #(I"). Now, by Proposition 6.10, g and h are conjugate,
which completes the proof of the lemma.

The difficulty we have to overcome now is that pseudo-orbit expansions of
orbits of type II can and will produce new fake pseudo-orbits and therefore
may change the residue class of some ngy. So that we cannot be sure that
g and h are not conjugate if the condition in the lemma is not satisfied
for some choice of legal symbols satisfying 1) — 4). Hence we need a closer
investigation of this phenomenon.

From now on will denote elements of Ey, by their defining sequence, i.e.,
e =b, € Ef) is denoted by w. And for w, let P(w) denote the period of w;
thus, P(w) is the least non-zero positive integer with W™ = w, where k is

the ‘forget’ (4.4). Furthermore, we define the multiplicator M (w) of w by

M(w) = [{w(i) | w(i) #0, 0 <i < Pw)}:

Theorem 6.12 Suppose g,h € Hy,, have finite order. Then it is effectively
decidable if g and h are conjugate in Hyp.

Proof. Let A and T be legal symbols for g respectively h such that 1) — 4)
hold. We are going to describe an effective procedure which decides whether
A and T have legal expansions satisfying 5).

Suppose for a moment that d — type(A) = (wi,...,wn,a)) and let M; =
M (w;). Then it is an easy consequence of Proposition 6.9 b) (iii) that there
is a legal expansion A’ of A such that d — type(A) = d — type(A’) and

na(A) + (p—2) SIS \M;, il =d
m(A") = 9 npg(A) + ST x Mg, ifl=pd
ni(A), if 1 # d, pd
for any choice of A\; € IN.

Let D(g) denote the set of all divisors of |g| that are not divisible by p and
let n € IN be such that p" is the highest power of p dividing |g|. Hence, if
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d' € D(g) then every legal expansion A of A with d' —type(A) = d' —type(A)

satisfies
mgr (A)

na(A) =na(A)+(p-2) Y AiM;
i=1
for suitable \; € IN. Furthermore, since A and T' have the same d’' — type,
there are legal expansions A’ and IV with the same d’' —type and ngy (A') =*
ng(I') (mod p — 1) if and only if

mgr (A)
na(A) —ng(T)= Y &M; (mod p—1) (6.6)
i=1

has a solution with & € Z. This is because we can alter A and T" and the
fact that for [ exactly the same M; are to be used.

We may now assume that (6.6) has a solution for all &’ € D(g). It is
clear that for legal expansions A’ and TV with d’' — type(A’) = d' — type(T")
and nj(A") =* nl(I') (modp — 1), d € D(g), we have new values for
nap(A’) and ngp(T') in comparison to A and I'. But, by repeating the
argument above for divisors of the form d'p’, d' € D(g), 1 < i < n—1
in increasing order, and noting that expansions of pseudo-orbits of index
(e,d'p") (1 # e € Eyp) leave ng, unchanged for 0 < j < 4, it is decidable
whether g and h have legal symbols A’ and T” satisfying ng(A’) =* ng(T)
(mod p—1) for all divisors d of ‘%‘ or |g| according to whether |g| is divisible
by p or not. Thus, if for such A’ and I' also ng(A") =* ng(I’) (mod p—1)
holds for all other divisors d of |g|, then g and h are conjugate in #jp,
by Lemma 6.11. On the other hand it is clear from the procedure that, if
this is not the case then g and h do not have legal symbols which satisfy
5), whnece g and h cannot be conjugate in Hy p, by Proposition 6.10. The
proof of Theorem 6.12 is now complete.

Combining this result with Lemma, 5.4, Proposition 6.6 and Proposition 6.7
we have

Theorem 6.13 The conjugacy problem for elements of Gy, with flat M-
symbols is solvable if p is a prime.

We would like to point out that this is the obvious adoption of the method
used in [24] to classify conjugacy classes of finite subgroups of Gy, ,. Only,
here it gets a little more complex, as we have to take the group M into
account. Let us conclude this thesis by showing that there are as many
isomorphism classes among the Hy,' as possible and a proof of Theorem A
stated in the introduction.

Theorem 6.14 Ifp and q are primes and p # q, then H, is not isomorphic
to Hyq and Hf,p' is not isomorphic to ’Hf,q'
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Proof. First of all, the group #, has infinitely many conjugacy classes of
elements of order p because there are symbols A whose columns have equal
top and bottom row entries with mg(A) = k for every k € IN. On the other
hand, it has only finitely many conjugacy classes of elements of order g,
since such a conjugacy class is characterised by the numbers of fixed points
and g-cycles both modulo p — 1. The same arguments goes through for the
derived subgroups. This completes the proof.

Proof of Theorem A. Put Theorems 4.10, 4.14 and 6.14 together. The
proof and thesis are complete.
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APPENDIX A

SOME CALCULATIONS

Here we present detailed calculations of relations used in the proof of Lemma,
3.9. Since we are dealing with elements of G, 1 which all have 1-symbols we
do not print the ones in the middle rows.

. . . d; ; .
First we show how to obtain the relation ¢ = aw]jll ---af,-;.; o, used in the
first part of the proof of Lemma 3.9. We omit the columns

anQj a;
1 and 1
0nQj a;

for 2 < j <mand 2 <7< n—1 as they are not altered by the elements
under consideration. In the following 1 <7 < n.

anG1  A10kyx "' Q1C0kq aflajlwafim,-jl alafjrﬂafixijr
bet
a1 analakl analakt analajlai analajrai
iy
‘l’o-le
a1 ana1Gg, -+ apa10ag, analajla% anG10;,0;
1
9jr
} oaf]
a1 ana1ag; *** GpG10k, (pa1G5ag; - 0na10;,0ig;,
16
(027X 251 a1Qp, e a10p, alajlaiwijl - alajramjr
Lox
ana1 Q1Q0k;r '+ Q10kq alajlﬂ'a'ia:,-jl alajmam%

1

Computing the relation adi60,;60ia~ 77! = € in the case m = p. Assume
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that a;m = a1, that is im = 1.

ay

ap

apa1a1

a101

ai(a1m)

apai(am)

apa1(a1m)

Wir

a1 (am)

wy
apa1a2
apa1ay
aias
a1 (agm)
apai(azm)
apa1(am)
W

a1 (agm)

w;

apa1a;

apQ1G;

a1a;

aiay

apat1a1

ai

ai

ai1a;

Wp
apa1ap
apaiap

aiap
a1 (apm)
apai(apm)
apai(apm)

Wy

ai(apm)

Computing the relation 777y - -ns_1 = vsf7L.

22

ai

w2

22

22

23

w2

w3

Z3

23

Zs—1

Ws—2

Ws—1

Zs—1

Zg a1a1
Wg—1  Ws
a1 Wg
a ZsA1
Zg ai1a1

Computing the relation €vg - - - 1960 = .

a

22

22

a

U1

w2

23

Z3

22

V2

Ws—2

Zs—1

Zs—1

Zs—2

ws_1 W
zs  a1(aim)
a;  zs(apm)

zs—1  2s(a1m)

vs—1 vs(am)
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alap

Wy

Wy

25y

aiay

Wy

a1(ap)
zs (apm)
zs (apm)

vs(apm)

Wp+1
Zp+1
Zp+1
Zp+1
Zp+1
Zp+1
Zp+1
Wp+1

Zp+1

sL,’_II
Ime--ms_1
1B

-1
Ly

Leé
s

lvs 11

Ws—1

Zs—1

Wi

apaia1

a

apa1

apay

a

apa1a1

la
161
16
Lox
16
161
Lot
bt




Computing the relation 7/ ! = 7.

uy u2 o Us—1
ay zg v Zs—1
ay wg v Ws1

Usa]

2sa]
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APPENDIX B

TREE DIAGRAMS OF GENERATORS

, T and n odd

X %, _
CZ /Z.\ - n+r | /-\ n+r
1 N

,otherwise

\
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APPENDIX C

TREE DIAGRAMS TO LOOK AT

B8

Uy Wi,

U+ Uiz T Ugsrn

m=2n—2and k=m+1t

Wit Wic+2 T Witr n

The top row of T’ and  the basis corresponding to S.
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i(A), 82
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conjugacy problem, 72
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expansion of

inescapable basis, 7
pseudo-orbit, 73

symbol, 12

fake- F-expansible, 36

Grigorchuk group, 52

inescapable
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isomorphism, 9
subspace, 8

legal expansion, 84
locally finite, 22

middle row entries, 11
order problem, 62

pseudo-orbit, 72
characteristic of, 73
class of, 75
index of, 82
trace of, 73
type of, 81

row,
bottom, 11
top, 11

set of type s, 33
simple expansion of
inescapable basis, 7
pseudo-orbit, 73
symbol, 12
step column, 65
symbol, 11
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(9)-E-, 66
(g)-fake-Ef -, 66
fake-E., 36
flat, 66
index of, 82
legal, 81
normal, 76
rank of, 82
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