
Linear Algebra for MAS 162 and MAS 163

Sem. 2, 2001/02, Lecturer: Claas Röver

Lecture 1

1 Linear equations

1.1 One unknown

What are the solutions of the following equation?

a · x = c, a, c ∈ IR. (1)

In words, the set of solutions of (1) are all those real numbers which give a
true statement when substituted for x in (1).

In order to find the solutions of (1), we can simply solve for x, and obtain
x = c

a
if a 6= 0, as we are not allowed to divide by zero. But what if a is in

fact zero? Then it clearly does not matter which value we substitute for x,
we will always get 0 = c. So if c is zero, then all real numbers are solutions
of the equation. And if c is not zero, then the equation has no solutions.

Point to note. The equation (1) has
- a unique solution if a 6= 0, or
- all real numbers as solutions if a = 0 and c = 0, or
- no solution, if a = 0 and c 6= 0.

The equation (1) is the simplest example of a linear equation.

1.2 Two unknowns

A little more interesting are equations with two unknowns which have the
general form

ax + by = c, a, b, c ∈ IR. (2)

Again, we would like to know the solutions, i.e. all pairs of real numbers (s, t)
which, when substituting s for x and t for y in (2), give a true statement.

It is clear that in case a = 0 it does not matter which value we assign to
x, and the equation becomes by = c. And similarly, if b = 0 then every
value will do for y and the equation becomes ax = c. In both cases we are
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then back in the situation of (1), but keep in mind that there was a second
unknown whose value can be chosen freely.

Hence we assume now that a and b are non-zero. First observe that, if we
fix a value for x, s say, then we are left to solve

as + by = c

which is the same as

by = d, where d = c − as ∈ IR.

And this has the same form as (1). In particular, we get that the solutions
of (2) are all pairs (s, c−as

b
) with s ∈ IR.

Point to note. The equation (2) has
- no solution, if a = b = 0 and c 6= 0, or
- infinitely many solutions, otherwise.

Why is there never a unique solution? Intuitively, the answer is that we have
two unknowns but only one equation. So we can choose one unknown freely,
and then the other one is determined uniquely, still assuming a and b are
non-zero.

To express this dependence we could write f(x) for y, and rewrite (2) as

f(x) =
c − ax

b
= px − q, where p = −a

b
and q =

c

b
. (3)

Now we know that this function describes a line in the usual coordinate
system below, when we draw all the points (x, f(x)), x ∈ IR.

x

y

Conclusion. The solutions of (2) with a and b non-zero are all points on
the line given by (3).
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Example. The solutions of 3x − 2y = 12 are all pairs (x, 1.5x − 6), x ∈ IR.
Or all points in the plane on the line given by f(x) = 1.5x − 6, which is
drawn below.

x

y

1

1

Remark. Even if only one of a and b is non-zero, we can interpret the
solutions of (2) as a line. This time it is

- a horizontal line if a = 0 and b 6= 0, or
- a vertical line if b = 0 and a 6= 0.

So whenever (2) has a solution, then it has infinitely many solutions which
we can think of as the points on a certain line in the plane.

1.3 Two equations

The upshot of the previous section is that if we have two unknowns, then we
need at least two equations to determine a unique solution. So suppose we
are given the following system of linear equations

{

a1x + b1y = c1

a2x + b2y = c2
(4)

where a1, a2, b1, b2, c1, c2 ∈ IR.

The solutions of (4) are now all pairs of real numbers which solve both
equations simultaneously. Clearly, for a solution to exist, each of the two
equations must have a solution, in which case the solutions of each equation
are the points on a line in the plane. It follows now, that the solution of the
system of equations (4) is the intersection of those two lines. But two lines
in the plane could be parallel, in which case there is no solution, or the two
lines could be identical, in which case there are infinitely many solutions.
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Conclusion. The system of equations (4) has
- a unique solution, or
- infinitely many solutions, or
- no solution at all.

Examples.

(a)

{

2x − 3y = 7
3x + 5y = 1

has a unique solution, x = 2, y = −1.

(b)

{

2x − 3y = 1
4x − 6y = 2

has infinitely many solutions x = s, y = 2
3
x − 1

3
.

(c)

{

2x − 3y = 1
4x − 6y = 3

has no solution: the equations are inconsistent.

1.4 The general case

In the course of this lecture we will learn how to solve systems of linear
equations with m equations and n unknowns x1, x2, . . . , xn, m and n are
integers ≥ 1 (which can be very large!). Such a system can be written as



































a11x1 + a12x2 + · · ·+ a1n = b1

a21x1 + a22x2 + · · ·+ a2n = b2
...

ai1x1 + ai2x2 + · · ·+ ain = bi

...
am1x1 + am2x2 + · · ·+ amn = bm

Here each aij is a real (or sometimes complex) constant, and so is each bi. It
is worth remembering the meaning of the indecees: aij is the coefficient of xj

in the ith equation.
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Lecture 2

2 Gaussian elimination

Two systems of equations are called equivalent if they have the same solution
set; in particular they must have the same number of unknowns.

The following three types of operations transform a system of linear equations
into an equivalent one.

1. Multiplying one equation by a non-zero real (maybe complex) number.

2. Replacing the ith equation by the sum of the ith and the jth equation.

3. Reordering the equations.

Now consider the system of m linear equations in n unknowns given by


































a11x1 + a12x2 + · · · + a1nxn = b1

a21x1 + a22x2 + · · · + a2nxn = b2
...

ai1x1 + ai2x2 + · · · + ainxn = bi

...
am1x1 + am2x2 + · · · + amnxn = bm

(5)

First reorder the equations such that a11 is non-zero; we always assume that
the coefficient of xj in the ith equation is aij . This is possible because the
original system is assumed to be in n unknowns, so that in at least one of
the equations x1 has non-zero coefficient.

Then subtract ai1
a11

times the first equation from the ith equation. After that
the ithe equation has zero coefficient for x1. And we do this for all i with
2 ≤ i ≤ m.

Now, the system consisting of all but the first equations, S say, has one less
equation than the original system and is in one less unknown. So it is in
some sense simpler and we restrict our attention to that system next. This
makes sense, for if we have a solution (s2, . . . , sn)of S, then we can find the
s1 which makes (s1, s2, . . . , sn) a solution of the original system from the first
equation, that is s1 = 1

a11

(b − a12s2 − · · · − a1nsn).

Applying the same procedure to S and so on, we eventually transform the
system (5) into one with aij = 0 whenever i < j. And it comes as no surprise
that there are three possibilities, n < m, n = m, and n > m.
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If n < m, i.e. there are less unknowns than equations, then after n − 1
reductions, we are left with a system in which the last m − n + 1 equations
only involve xn. It is then often the case that the system will have no solutions
at all because these equations contradict each other, eg xn = 2 and 3xn = 5.

If, on the other hand, n > m, then the last equation in the transformed
system may still have non-zero coefficients for more than one variable, and
we find infinitely many solutions in that case.

Finally, if n = m, then it can happen that there is precisely one solution,
although infinitely many or none is still possible because

Remark. Note that it can happen in this process that, when we eliminate
the unknown xi another unknown also completely disappears from the new
smaller subsystem.

This procedure is called Gaussian elimination. It is probably best understood
by looking at
Examples. (a) Consider the system of equations















x +y −2z +2u = 3
2x +y −z +2u = 5
3x +y +z −2u = 4
4x +2y −3z +u = 6

Subtracting twice the first eq. from the second, three times the first from
the third, and four times the first from fourth yields















x +y −2z +2u = 3
−y +3z −2u = −1
−2y +7z −8u = −5
−2y +5z −7u = −6

Now subtract twice the second eq. from the third and fourth to get














x +y −2z +2u = 3
−y +3z −2u = −1

+1z −4u = −3
−1z −3u = −4

Finally, add twice the third eq. to the fourth, which results in














x +y −2z +2u = 3
−y +3z −2u = −1

z −4u = −3
−7u = −7
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So u = 1, which when substituted into the third eq. implies z = 1. Now the
second eq. tells us that y = 2, and then x = 1 follows from the first equation.
Hence the solution is (1, 2, 1, 1).

(b) Consider the system







2x +3y −z = −5
x −2y +4z = 1
5x 4y +2z = −9

First interchange the first and second equation.







x −2y +4z = 1
2x +3y −z = −5
5x 4y +2z = −9

Now subtract twice the first from the second and five times the first from the
third to get







x −2y +4z = 1
7y −9z = −7
14y −18z = −14

Finally, subtracting twice the second from the third gives.







x −2y +4z = 1
7y −9z = −7

0 = 0

Now what does this mean, 0 = 0? This is just to indicate that there was
actually a third equation. But since it was the same as twice the second it
has no influence on the solution set whatsoever.

The second equation tells us that y = 9
7
z−1. And then the first equation says

that x = 1+2(9
7
z−1)−4z = −1− 10

7
z. So we get the following parametrised

description of all the solutions: (−1 − 10
7
s, 9

7
s − 1, s). That is to say that all

those triples with s ∈ IR are a solution of the given system of equations.

3 Homogeneous vs inhomogeneous

Again suppose we are given a system S of linear equations as in (5). Assume
also that (r1, . . . , rn) and (s1, . . . sn) are solutions of S.

Is (r1 − s1, . . . , rn − sn) also a solution of S? Well, in general not. This is
because we have
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1. a11s1 + a12s2 + · · · + a1nsn = b1, as (s1, . . . sn) is a solution,

2. a11r1 + a12r2 + · · · + a1nrn = b1, as (r1, . . . rn) is a solution, and

3. a11(s1−r1)+a12(s2−r2)+· · ·+a1n(sn−rn) = b1, if (r1−s1, . . . , rn−sn)
was a solution.

Since the left hand side of 3. equals

(a11s1 + a12s2 + · · ·+ a1nsn) − (a11r1 + a12r2 + · · ·+ a1nrn) = b1 − b1,

by 1. and 2., (r1 − s1, . . . , rn − sn) can only be a solution if b1 = 0, and
similarly all the bi have to be zero for 1 ≤ i ≤ m.

Conclusion. If one of the bi is non-zero, then (r1 − s1, . . . , rn − sn) is not a
solution of S.

But the argument shows that (r1−s1, . . . , rn−sn) is a solution of the system



































a11x1 + a12x2 + · · · + a1nxn = 0
a21x1 + a22x2 + · · · + a2nxn = 0

...
ai1x1 + ai2x2 + · · ·+ ainxn = 0

...
am1x1 + am2x2 + · · ·+ amnxn = 0

(6)

which is called the homogeneous system associated to (5). It follows from
this that

All solutions of the inhomogeneous system (5) are of the form

(s1 + q1, . . . , sn + qn),

where (s1, . . . sn) is a fixed solution of (5) and (q1, . . . qn) is an arbi-
trary solution of the associated homogeneous system (6).

Why bother? Because (6) is a little easier to handle in the Gaussian elimi-
nation process (all right hand sides of the equations will stay zero).

Moreover, when (r1, . . . , rn) and (s1, . . . sn) are solutions of (6) then so are
(r1 + s1, . . . , rn + sn) and (λr1, . . . , λrn) for all real (complex) numbers. So
the solution set of the homogeneous system has nicer properties than the
solution set of the inhomogeneous system.
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4 Matrix and vector notation

Instead of carrying along all the xi’s while solving a system of equations, we
could simply deal with the coefficients if we make sure we know in front of
which unknown in which equation a given coefficient appears. But this is
already achieved by our choice of indices in (5); the coefficient of xi in the
jth equation is aji.

Hence it is convenient to denote (6) by the scheme



















a11 a12 · · · a1n

a21 a22 · · · a2n

...
ai1 ai2 · · · ain

...
am1 am2 · · · amn



















(7)

Such a scheme is called a matrix, more precisely, a matrix of type m by n,
or an m × n-matrix.

The inhomogeneous system (5) is often denoted by the scheme



















a11 a12 · · · a1n b1

a21 a22 · · · a2n b2
...

...
...

...
ai1 ai2 · · · ain bi

...
...

...
...

am1 am2 · · · amn bm



















(8)

where the vertical line indicates that the entries to the right of it are not
coefficients of unknowns but rather the right hand sides of the equations.

A column vector is now simply a k × 1-matrix, and a row vector is a 1 × k-
matrix, eg.











s1

s2
...
sk











, and (r1, r2, . . . , rk)

are a column vector with n rows and a row vector with k columns, respec-
tively.
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The product of a row vector by a column is defined if and only if the they
both have the same number of entries, say n, in which case it is defined by

(r1, r2, . . . , rn)











s1

s2
...
sn











= r1s1 + r2s2 + · · ·+ rnsn. (9)

Remark. Observe that this product is a real (or complex) number, or if you
like a 1 × 1-matrix.

Extending this definition, by viewing a matrix as a collection of row vectors,

we define the product of the matrix in (7) with the column vector s =











s1

s2
...
sn











by



















a11 a12 · · · a1n

a21 a22 · · · a2n

...
ai1 ai2 · · · ain

...
am1 am2 · · · amn





































s1

s2
...
si

...
sn



















=



















a11x1 + a12x2 + · · · + a1n

a21x1 + a22x2 + · · · + a2n

...
ai1x1 + ai2x2 + · · ·+ ain

...
am1x1 + am2x2 + · · ·+ amn



















,

(10)
which is another column vector; its first entry is the product of the first row
of the matrix with s, its second entry is the product of the second row of the
matrix with s and so on.

In particular, if we denote the matrix in (7) by A, and agree to write y for










y1

y2
...

yn











whatever letter y might be, then the system of equations (5) may

be written as Ax = b.
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Lecture 3
Matrix and vector notation continued

We can now define the product of two matrices, by viewing the second matrix
as collection of column vectors. In particular, the first matrix must have as
many columns as the second matrix has rows for the product to be defined.
The general formula is a bit complicated but in words it is as follows.

The entry in the i-the row and j-the column of the product AB
is the product of the i-th row of A by the j-th column of B. In
particular, the product of an m × n-matrix by an n × k-matrix is of type
m × k.

(m × n-matrix)(n × k-matrix) = m × k-matrix (11)

Examples.

1)

(

2 −1 3
0 2 1

)





3 1
−1 1
−2 2



 =

(

1 7
−4 4

)

2)

(

2 −1 3
0 2 1

)(

2 −1 3
0 2 1

)

is not defined!!

3)





1 0 1
0 1 0
0 0 1









3 1
−1 1
−2 2



 =





1 3
−1 1
−2 2





4.1 Properties of matrix multiplication

Matrix multiplication shares some but not all properties with ordinary mul-
tiplication of complex (real) numbers. The first difference to note is that the
product of two matrices may not be defined. Recall the following

Facts. Multiplication of real (complex) numbers satisfies
- associativity; for all a, b, c ∈ IR, a(bc) = (ab)c.
- commutativity; for all a, b ∈ IR, ab = ba.
- existence of identity; there is 1 ∈ IR so that for all a ∈ IR, a·1 = 1·a = a.
- existence of inverse; for all a ∈ IR there is b ∈ IR such that ab = ba = 1.
- existence of zero; there is 0 ∈ IR so that for all a ∈ IR, a · 0 = 0 · a = 0.
- no zero divisors; for all non-zero a, b ∈ IR, ab 6= 0.
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4.1.1 Associativity

Theorem 1 Matrix multiplication is associative, i.e. for all matrices A, B,
and C, A(BC) = (AB)C.

Proof. The first thing to observe is that, by (11), both sides of the equality
are either both defined or they are both not defined.

For a matrix A let Aij denote its entry in the i-th row and j-th column. Then
matrix multiplication can be expressed in the following way.

Let A be an m × n-matrix, and let B be an n × k matrix. Then for every i
and j with 1 ≤ i ≤ m and 1 ≤ j ≤ k,

(AB)ij =
n
∑

p=1

AipBpj = (ith row of A)(jth column of B),

Now let C be a k × l-matrix. Then for all i and j with 1 ≤ i ≤ m and
1 ≤ j ≤ l

(A(BC))ij =
n
∑

p=1

Aip(BC)pj (12)

=
n
∑

p=1

Aip

(

k
∑

q=1

BpqCqj

)

(13)

=

n
∑

p=1

k
∑

q=1

Aip(BpqCqj) (14)

=

n
∑

p=1

k
∑

q=1

(AipBpq)Cqj, using associativity of IR, (15)

=
k
∑

q=1

(

n
∑

p=1

AipBpq

)

Cqj, changing order of summation,(16)

=
k
∑

q=1

(AB)iqCqj (17)

= ((AB)C)ij (18)

and the theorem is proved because i and j were arbitrary.

Recall the compact form for a system of linear equations, Ax = b that we
obtained at the end of the last lecture. It clearly suggest that we study the
behaviour of products of the type matrix times vector, Av say.
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4.1.2 Matrix times vector, or linear mappings

Convention. I’m using v for an arbitrary vector and x for an unknown
vector. I see that this might cause confusion at first. But on the other hand
it exposes the different faces a vector has: it can be a variable or unknown in
an equation, or it may just be a particular but not further described “point”
in IRn, the set of all n-tuples of real numbers. Let us also agree that writing
Av implies that the product is defined. Just imagine your favourite two
natural numbers m and n and assume that A is an m × n-matrix and v is
an n-dimensional column vector (we will pin down the notion of dimension
mathematically precise in a future lecture).

Since Av is again a vector, say m-dimensional, we can interpret A as a
mapping IRn −→ IRm. The first two properties of such mappings are

(Lin1) A(v + u) = Av + Au, and

(Lin2) A(λv) = λ(Av),

where we use the following definitions with λ ∈ IR

v + u =







v1 + u1
...

vn + un






, and λv =







λv1
...

λvn






.

In words the two properties (Lin1) and (Lin2) say that matrix mappings
respect addition and scalar multiplication of vectors.1

We call Av the image of v under A. Since every vector v can be written as







v1
...

vn






= v1











1
0
...
0











+ · · ·+ vn











0
...
0
1











,

it suffices to know the images of











1
0
...
0











, · · · ,











0
...
0
1











under A and then use

(Lin1) and (Lin2) to obtain the image of v under A.

1This is one incarnation of a general mathematical species called a linear mapping from
one vector space to another vector space; hence the names for the rules. Most of the time
we will work with IRn, n-dimensional real or Euclidean space. Certain sets of functions
can also form vector spaces, for instance all 2π-periodic functions from IR −→ IR.
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Lecture 4
Matrix and vector notation further continued

One important consequence of associativity (Theorem 1) is the following
result which says that composition of mappings corresponds to matrix mul-
tiplication.

Corollary 2 Let A and B be an n× k-matrix and an m× n-matrix respec-
tively, and let v be a k-dimensional vector. Then the image of v under BA
is the image of Av under B.

To see this, view v as k× 1-matrix and note that the statement is equivalent
to (BA)v = B(Av) which follows from Theorem 1.

4.1.3 Identity, Zero, and zero-divisors

In analogy to the real number one, let us define an identity matrix I to be
one that satisfies AI = IA = A for all A for which both products are defined.
Let us show that identity matrices exist. That every identity matrix must be
square follows from (1) on page 12. And hence for AI and IA to be defined,
A has to be a square matrix as well.

For each n there is an n × n (or n-square) identity matrix In. To see this
define

In =











1 0 · · · 0

0 1 0
...

... 0
. . . 0

0 · · · 0 1











,

or using the notation from the proof of Theorem 1,

(In)ij =

{

1 , if i = j
0 , otherwise

.

Now the multiplication formula gives

(AIn)ij =
∑

p

Aip(In)pj = Aij and

(InA)ij =
∑

p

(In)ipApj = Aij .
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Theorem 3 There is only one n-square identity matrix for each dimension
n.

Proof. Suppose I and I ′ are both n-square identity matrices. Then I =
II ′ = I ′, and so I = I ′.

The m×n zero matrix, denoted 0m×n or 0n when n = m, is defined to be the
m×n-matrix which has all entries equal to zero. It is easy to check (do it?!)
that for every n× k matrix A and every l×m-matrix B, 0m×nA = 0m×k and
B0m×n = 0l×n.

Theorem 4 For every n ≥ 2, the set of n × n-matrices has zero divisors,
i.e. there are non-zero n × n-matrices A and B with AB = 0n.

Proof. The case n = 2 is Exercise 2(a) on problem sheet 2, eg.
(

0 1
0 0

)(

5 4
0 0

)

=

(

0 0
0 0

)

.

And if n > 2, the matrices which have their upper left 2 × 2 corner equal to
the matrices above and zeros elsewhere will do the trick.

4.1.4 Inverses

By definition the matrix A has a left inverse if there is a matrix B with
BA = In for some n. Note that B and A have to be of type n×m and m×n
respectively, if BA = In holds. This, in turn, implies that AB exists as well.

Example of a left inverse which is not a right inverse for the same matrix.

(

2 2 2
0 2 1

)





1
2

0
0 1
0 −1



 =

(

1 0
0 1

)





1
2

0
0 1
0 −1





(

2 2 2
0 2 1

)

=





1 1 1
0 2 1
0 −2 −1





Let us record the following consequence of the existence of zero divisors: not
every matrix has a left inverse.

Corollary 5 For every n ≥ 2, there are n-square matrices without left in-
verse.

15



Proof. Let n ≥ 2. By the theorem, there are non-zero n×n-matrices A and
B with AB = 0n. Assume that A has a left inverse, C say. Then

0n = C0n = C(AB) = (CA)B = InB = B

which is a contradiction, as B 6= 0n. Hence A has no left inverse.
Remark. Note the use of Theorem 1 in the proof.

We say that A has an inverse B if AB = BA = In for some n.

Theorem 6 If a matrix A has an inverse B, then A is a square matrix and
B is unique.

Proof. It follows from (1) on page 12 that A has to be a square matrix.
Now assume B and B′ are inverses of A, then B′ = B′(AB) = (B′A)B = B.
This proves the theorem (again using Theorem 1).

A matrix A with an inverse, usually denoted A−1, is called invertible or non-
singular. Since an inverse is in particular a left inverse, there are singular
matrices, that is matrices without inverse, by the corollary.

Problem. When does a square matrix have an inverse?

This will be addressed later in the course. Here is one reason. Suppose you
can find the inverse A−1 of the matrix A. Then, because of x = (A−1A)x =
A−1b, you solved the system Ax = b of linear equations.

Theorem 7 Let I be a matrix satisfying AI = A for all matrices A such
that AI is defined. Then I = In for some n. In particular, if A is square
then IA = A holds too.

Proof. First note that I has to be a square matrix, n × n say. Now define
a matrix E(kl) with 1 ≤ k, l ≤ n by

(E(kl))ij =

{

1, if i = k and j = l
0, otherwise

. (19)

We exploit that E(kl)I = E(kl) for any choice of k and l. So choose i with
1 ≤ i ≤ n and check

1 = (E(ki))ki = (E(ki)I)ki =
n
∑

q=1

(E(ki))kqIqi = Iii.

16



And if i 6= j, then

0 = (E(ki))kj = (E(ki)I)kj =
n
∑

q=1

(E(ki))kqIqj = Iij.

It follows now that I = In and the proof is complete.

4.1.5 Commutativity

Theorem 8 Matrix multiplication is not commutative, not even for square
matrices.

Proof. Check
(

5 4
0 0

)(

0 1
0 0

)

=

(

0 5
0 0

)

and compare with the product in the proof of Theorem 4, q.e.d.

Remark. Non commutativity is a common feature of mappings, eg. if
f(x) = x2 + 1 and g(x) = 1

x
, then (f ◦ g)(x) = 1

x2 + 1 6= (g ◦ f)(x) = 1
x2+1

.

4.1.6 Addition and distributivity

Let A and B be matrices of the same type, n×m say. Then we define A+B
as the matrix whose ij-entry is the sum of the ij-entries of A and B. In our
compact notation this is (A + B)ij = Aij + Bij . Let us also define λA for a
real (complex) number λ, by (λA)ij = λaij .

The following facts follow directly from (Lin1) and (Lin2) on page 14, by
viewing the second factor as a collection of columns. Assume that all the
products and sums below are defined.

1. A(B + C) = AB + AC

2. (B + C)D = BD + CD

3. A(λB) = λ(AB) = (λA)B.

The first two laws are called left and right distributivity, respectively.

17



Lecture 5

4.2 Matrices doing row operations

Recall the definition of the matrix E(kl) from page 17. Suppose E(kl) is an
m × n-matrix and let A be an n × p-matrix. Then

(E(kl)A)ij =

n
∑

q=1

(E(kl))iqAqj =

{

Alj, if i = k
0, otherwise

.

We can express this as follows.

The k-th row of E(kl)A is the l-th row of A and all other entries are
zero.

Now we can use distributivity (cf. 4.1.5.) to see that (In + λE(kl))A is the
matrix obtained from A by adding λ times the l-th row to the k-th row.
Notice that E(kl) has to be a square matrix for the sum and the product to
be defined. But that is no problem.

Example. (row addition)

(I3 + 2E(21))





a1 b1 c1

a2 b2 c2

a3 b3 c3



 =





1 0 0
2 1 0
0 0 1









a1 b1 c1

a2 b2 c2

a3 b3 c3





=





a1 b1 c1

a2 + 2a1 b2 + 2b1 c2 + 2c1

a3 b3 c3





Next consider B = (In − E(ll) − E(kk) + E(kl) + E(lk))A. I claim that this is
the matrix obtained from A by interchanging its l-th and k-th row. Look at
the l-th row of B: it is

lth row of A − lth row of A + kth row of A

and the k-th row of B is

kth row of A − kth row of A + lth row of A.

All other rows of B are equal to the same row of A. This verifies the claim.
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Example. (interchanging rows)

(I3 − E(11) − E(22) + E(21) + E(12))





a1 b1 c1

a2 b2 c2

a3 b3 c3





=





0 1 0
1 0 0
0 0 1









a1 b1 c1

a2 b2 c2

a3 b3 c3



 =





a2 b2 c2

a1 b1 c1

a3 b3 c3





Finally consider B = (In + (λ − 1)E(kk)). Then the k-th row of BA is

kth row of A + (λ − 1) times the kth row of A,

which is just λ times the k-th row of A. All other rows are the same as for
A.

Example. (scalar multiple of row)

(I3 + 4.5E33)





a1 b1 c1

a2 b2 c2

a3 b3 c3



 =





1 0 0
0 1 0
0 0 5.5









a1 b1 c1

a2 b2 c2

a3 b3 c3





=





a1 b1 c1

a2 b2 c2

5.5a3 5.5b3 5.5c3





Thus we have expressed all row operations, as defined on page 5, in terms of
matrix multiplication. That this is useful is the theme of the next section.

5 Invertible matrices

Suppose A is an n-square matrix. Let us investigate what can be said under
the assumption that A has an inverse A−1.

Consider the system of equations

Ax = b, (20)

where b is an arbitrary n-dimensional vector.

If (20) has a solution v, i.e. Av = b, then

v = Inv = A−1Av = A−1b
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i.e., v = A−1b. On the other hand A−1b is a solution of (20), as A(A−1b) = b.
In particular, for every b, the equation (20) has a unique solution.

Now assume that A is an n-square matrix such that Ax = b has a unique
solution for every b. Consider the Gaussian algorithm on A. It transforms A
into a matrix of the form











a11 a12 · · · a1n

0 a22 · · · a2n

. . .
...

0 ann











.

We must have ann 6= 0 because b was arbitrary. Hence we can add multiples
of the last row to the others to eliminate all the ain with i < n. Now we have
a matrix of the form















a11 a12 · · · a1n−1 0
0 a22 · · · a2n−1 0

. . .
...

...
0 an−1n−1 0

0 ann















.

Again, it follows that an−1n−1 6= 0, and we can eliminate the ain−1 for i <
n − 1, by adding multiples of the (n − 1)-st row to the others.

We will always find that the ii-entries are non-zero, by choosing the right b,
and continuing the process, we eventually transform A into a diagonal matrix;
that is a matrix in which only the ii-entries for 1 ≤ i ≤ n are non-zero. And
in our case we even know that the diagonal entries are all non-zero, because
otherwise Ax = 0 would have more than one solution.

Since every row operation can be interpreted as multiplying A by the ap-
propriate matrix on the left, we have shown that there is a matrix B, the
product of all the row operations we used, so that

BA =







d1 0
. . .

0 dn






,

where all the di are non-zero. And therefore






1
d1

0
. . .

0 1
dn






BA = In.
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So A has a left inverse, call it C. Next we show that C is in fact an inverse
of A. To do this we have to show that AC = In.

First observe that, if ACv = v for every n-dimensional vector v, then
(AC)X = X for every matrix X such that the product is defined (view
X as a collection of columns). And then the obvious analogue of Theorem 7
(see Question 1 on sheet 4) tells us that AC = In. So we only have to show
that ACv = v holds for every v.

To this end, let v be an arbitrary n-dimensional vector. By assumption
Ax = v has a solution, w say. Hence

ACv = ACAw = AInw = Aw = v,

and we are done. Let us summarise this.

Theorem 9 An n-square matrix A has an inverse if and only if, for every
n-dimensional vector b the equation Ax = b has precisely one solution.

Now this might seem not very helpful because how does one check whether
(20) has a unique solution for every b. Well you don’t have to do it because
the arguments above show that one can transform A into the identity matrix
using row operations if A is invertible.

This also gives us a procedure to invert an invertible matrix A:
Write A and In next to each other and do the Gaussian algorithm on A and
simultaneously apply the same sequence of row operations to In. When you
have transformed A into In, then In has been transformed into A−1. Because
in effect you have multiplied both A and In with a matrix, P say. But then
P is nothing but the matrix into which In got transformed. Since PA = In,
P = A−1. If you cannot transform A into In, then it is not invertible.

Remark. It does not matter which sequence of row operations one chooses
as long as they transform A into the identity matrix.

Examples.

1.
(

2 1
3 2

) (

1 0
0 1

)

(

2 1
6 4

) (

1 0
0 2

)
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(

2 1
0 1

) (

1 0
−3 2

)

(

2 0
0 1

) (

4 −2
−3 2

)

(

1 0
0 1

) (

2 −1
−3 2

)

And it is alway worth checking for mistakes. But

(

2 1
3 2

)(

2 −1
−3 2

)

=

(

1 0
0 1

)

.

2.




1 2 3
2 5 0
−1 0 −14









1 0 0
0 1 0
0 0 1









1 2 3
0 1 −6
0 2 −11









1 0 0
−2 1 0
1 0 1









1 2 3
0 1 −6
0 0 1









1 0 0
−2 1 0
5 −2 1









1 2 0
0 1 0
0 0 1









−14 6 −3
28 −11 6
5 −2 1









1 0 0
0 1 0
0 0 1









−70 28 −15
28 −11 6
5 −2 1





And again one should check that





1 2 3
2 5 0
−1 0 −14









−14 6 −3
28 −11 6
5 −2 1



 =





1 0 0
0 1 0
0 0 1




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Lecture 6

6 Linear combinations and linear independence

6.1 Linear combinations and linear span

Let v1, v2, . . . , vm be n-dimensional vectors. By definition, a linear combina-
tion of the vectors vi (1 ≤ i ≤ m) is a sum of scalar multiples of the vi; that
is an expression of the form

α1v1 + α2v2 + · · ·+ αmvm, with αi ∈ IR, (1 ≤ i ≤ m).

Examples.

1.

(

4
2

)

is a linear combination of

(

1
1

)

and

(

0
2

)

because

(

4
2

)

= 4

(

1
1

)

+ (−1)

(

0
2

)

.

2.





11
1
−7



 is a linear combination of





1
1
0



,





0
2
0



, and





0
2
1



 be-

cause




11
1
−7



 = 11





1
1
0



 + 2





0
2
0



+ (−7)





0
2
1



 .

3.





11
1
−7



 is not a linear combination of





0
2
0



 and





0
2
1



 because

the first entry of

α





0
2
0



+ β





0
2
1





is zero for any choice of real numbers α and β.

The set of all linear combinations of the n-dimensional vectors v1, v2, . . . , vm

is denoted [v1, v2, . . . , vm] and called the linear span of the vi (1 ≤ i ≤ m).

Examples.

23



1. The linear span of

(

1
0

)

and

(

0
1

)

is the set of all 2-dimensional

vectors. For

(

a
b

)

= a

(

1
0

)

+ b

(

0
1

)

.

2. The linear span of v1 =

(

2
3

)

and v2 =

(

−1
−1.5

)

does not contain
(

2
2

)

, because v2 = −1
2
v1, and therefore every linear combination of

v1 and v2 is in fact a linear combination of v1 alone. But this means
that every vector in the linear span of v1 and v2 is a scalar multiple of

v1, and

(

2
2

)

6= αv1 for all α ∈ IR.

These examples show that there are pairs of 2-dimensional vectors v1 and v2

so that [v1, v2] is the set of all 2-dimensional vectors. But somehow v1 and
v2 cannot be completely arbitrary. We shall make this more precise in the
following section.

6.2 Linear independence

A sequence 〈 v1, . . . , vm 〉 of n-dimensional vectors v1, . . . , vm is called linearly
independent if there is a unique way to express the zero-vector 0 as a linear
combination of the vi (1 ≤ i ≤ m).

Since 0 = 0v1 + 0v2 + · · · + 0vm, we have that 〈 v1, . . . , vm 〉 is linearly inde-
pendent if and only if α1v1 +α2v2 + · · ·+αmvm = 0 implies α1 = α2 = · · · =
αm = 0.

Examples.

1. 〈
(

2
3

)

,

(

−8
−12

)

〉 is not linearly independent because

4

(

2
3

)

+

(

−8
−12

)

=

(

0
0

)

.

2. 〈
(

2
−2

)

,

(

4
5

)

〉 is linearly independent. To see this suppose

0 = α

(

2
−2

)

+ β

(

4
5

)

.
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But this is the same as
(

2 4
−2 5

)(

α
β

)

=

(

0
0

)

.

Thus we try to find the solutions of this system of equations. Using
matrix notation we want to solve

(

2 4 0
−2 5 0

)

.

Adding the first row to the second gives

(

2 4 0
0 9 0

)

.

And now the second row implies that β = 0 and then it follows from the
first row that also α = 0. Hence the zero-vector has a unique expression

as a linear combination of

(

2
−2

)

and

(

4
5

)

, i.e. 〈
(

2
−2

)

,

(

4
5

)

〉
is linearly independent.

6.2.1 Properties of linearly independent sequences

Throughout this subsection we assume that 〈 v1, . . . , vm 〉 is a linearly inde-
pendent sequence of n-dimensional vectors.

Claim 1. For every non-zero scalar α and every i with 1 ≤ i ≤ m, the
sequence 〈 v1, . . . , vi−1, αvi, vi+1, . . . , vm 〉 is linearly independent.

To see this suppose

0 = α1v1 + · · ·+ αi−1vi−1 + αi(αvi) + αi+1vi+1 + · · · + αmv
m

.

Since αi(αvi) = (α1α)vi and 〈 v1, . . . , vm 〉 is a linearly independent, we get
that α1 = · · · = αi−1 = αiα = αi+1 = · · · = αm. But α was not zero, so αi

must be zero, and we have established the claim.
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Lecture 7
Properties of linearly independent sequences continued

We still assume that 〈 v1, . . . , vm 〉 is a linearly independent sequence of n-
dimensional vectors.

Claim 2. For every pair of distinct indices i and j with 1 ≤ i, j ≤ m, the se-
quence obtained by replacing vi by vivj , i.e. 〈 v1, . . . , vi−1, vi + vj, vi+1, . . . , vm 〉,
is also linearly independent. This follows from

0 = α1v1 + · · ·+ αi−1vi−1 + αi(vi + vj)) + αi+1vi+1 + · · ·+ αmvm

= α1v1 + · · ·+ αj−1vj−1 + (αi + αj)vj) + αj+1vj+1 + · · ·+ αmvm

which implies α1 = · · · = αj−1 = αj + αi = αj+1 = · · · = αm = 0. So αi = 0
and αj + αi = 0, and hence αj = 0, which is what we needed to show.

Recall that we can view a real m × n-matrix A as a mapping from IRn to
IRm. And one could ask which vectors in IRm are in the image of A, i.e., for
which v ∈ IRm does there exist a vector w ∈ IRn with Aw = v?

Theorem 10 Let A be a real m×n-matrix. Then a vector v ∈ IRm is in the
image of A if and only if v is a linear combination of the columns of A.

Proof. This follows from

v = Aw = A







w1
...

wn






= A

























w1

0
...
0











+















0
w2

0
...
0















+ · · ·+











0
...
0

wn

























= A











w1

0
...
0











+ A















0
w2

0
...
0















+ · · · + A











0
...
0

wn











= w1A∗1 + w2A∗2 + · · ·+ wnA∗n

where A∗j denotes the j-th column of A.

Another important result is the following.

Theorem 11 A square matrix is invertible if and only if the sequence of its
columns is linearly independent.
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6.2.2 Dimension of a vector space

A real vector space is a generalisation of the vector space IRn which we have
been working with. It is a mathematical structure satisfying certain rules,
the vector space axioms, which capture the essence of the things we know
about IRn.

Whatever the precise definition of a vector space V is, there are notions of
linear combinations and linear independence. And one defines the dimension
of V to be the maximal length of a linearly independent sequence of vectors
in V or infinity if there are such sequences of arbitrary length.2

It turns out that IRn has precisely dimension n, as one would hope.

Remark. The set of all polynomials with real coefficients forms a real vector
space of infinite dimension.

7 Some geometry and determinants

Very useful features of IRn, alias Euclidean n-space, are distances and angles.
One way of thinking of a vector in IRn is to view it as a ’direction together
with a length’. This is why we often depict a vector as an arrow instead of
just marking it as a point.

The direction of a vector is certainly relative to some preferred direction
which in the following figures will be the x-axis.

Remark. Observe the link to polar coordinates here.

Fix an arbitrary vector v in IR2 and imagine it as shown in the following
figure.

v

v

α

v

1

2

v

y

x

2This is not in the syllabus, so if you want to know more about this consult a proper
Linear Algebra book, eg. R.B.J.T. Allenby Linear Algebra. There are over a hundred
others in the library.
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Let |v| denote the length of v. From the figure we see, using Pythagoras’
Theorem and the basic sin and cos rules, that

|v| =
√

v2
1 + v2

2,
v1

|v| = cos αv,
v2

|v| = sin αv.

Now let us try to determine the area F of the parallelogram with sides v and
w as in the following figure.

F

v

w r

θ

x

y

We find that
F = |v||r| = |v||w|| sin θ|.

The absolute value of sin θ is needed, as areas cannot be negative. Now
θ = αw − αv, so

sin θ = sin αw cos−αv + cos αw sin−αv = sin αw cos αv − cos αw sin αv,

by the symmetries of sin and cos and the addition theorems (see problem
sheet 2). And hence

F = |v||w| (sin αw cos αv − cos αw sin αv)

= |v||w|
(

w2

|w|
v1

|v|
− w1

|w|
v2

|v|

)

= v1w2 − v2w1.

This observation inspires the following definition.

The determinant of the 2× 2-matrix

(

a b
c d

)

, which we denote as

∣

∣

∣

∣

(

a b
c d

)∣

∣

∣

∣

,

is defined by
∣

∣

∣

∣

(

a b
c d

)∣

∣

∣

∣

= ad − bc.

Example.

∣

∣

∣

∣

(

2 1
2 3

)∣

∣

∣

∣

= 6 − 2 = 4

We can summarise what we know about invertible 2 × 2-matrices.
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Theorem 12 For a 2 × 2-matrix A the following are equivalent.

1. A is invertible

2. Ax = v has a unique solution for every two dimensional vector v.

3. The sequence consisting of the tow columns of A is linearly independent.

4. The parallelogram whose sides are the columns of A has non-zero area.

5. |A| 6= 0

Proof. The implications 1. =⇒ 2. =⇒ 3. =⇒ 4. =⇒ 5. are Theorem 9,
specification of v to 0, the fact that linearly independent vectors are not lying
on the same line, and the discussion above, respectively. To see 6. =⇒ 1.,
check that

1

ad − bc

(

d −b
−c a

)(

a b
c d

)

= I2.

The determinant of the 3 × 3-matrix





a b c
d d f
g h k



 is defined by

∣

∣

∣

∣

∣

∣





a b c
d e f
g h k





∣

∣

∣

∣

∣

∣

= a

∣

∣

∣

∣

(

e f
h k

)∣

∣

∣

∣

− b

∣

∣

∣

∣

(

d f
g k

)∣

∣

∣

∣

+ c

∣

∣

∣

∣

(

d e
g h

)∣

∣

∣

∣

Example.
∣

∣

∣

∣

∣

∣





1 2 0
2 1 −1
3 0 2





∣

∣

∣

∣

∣

∣

= 1

∣

∣

∣

∣

(

1 −1
0 2

)∣

∣

∣

∣

− 2

∣

∣

∣

∣

(

2 −1
3 2

)∣

∣

∣

∣

+ 0

∣

∣

∣

∣

(

2 1
3 0

)∣

∣

∣

∣

= 2− 14 = −12
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Lecture 8
Determinants continued

For n > 3, the determinant of an n-square matrix A is defined as follows.
Let A(ij) denote the (n − 1)-square matrix obtained from A by deleting the
i-th row and the j-th column. Now |A| is defined by

|A| = A11|A(11)| − A12|A(12)| + − · · · − (−1)n|A(1n)|.

Example.
∣

∣

∣

∣

∣

∣

∣

∣









11 12 13 14
21 22 23 24
31 32 33 34
41 42 43 44









∣

∣

∣

∣

∣

∣

∣

∣

= 11

∣

∣

∣

∣

∣

∣





22 23 24
32 33 34
42 43 44





∣

∣

∣

∣

∣

∣

− 12

∣

∣

∣

∣

∣

∣





21 23 24
31 33 34
41 43 44





∣

∣

∣

∣

∣

∣

+ 13

∣

∣

∣

∣

∣

∣





21 22 24
31 32 34
41 42 44





∣

∣

∣

∣

∣

∣

− 14

∣

∣

∣

∣

∣

∣





21 22 23
31 32 33
41 42 43





∣

∣

∣

∣

∣

∣

The general theory of determinants is not very easy, so we just collect the
most important properties in the following three theorems. Proofs of these
result can be found in the literature.

Theorem 13 Let A be an n-square matrix.

1. When B is the matrix obtained from A by multiplying the i-th row with
the real (or complex) number λ, then |B| = λ|A|.

2. When C is the matrix obtained from A by replacing the i-th row by the
sum of the i-th and the j-th row with i 6= j, then |B| = |A|.

3. When D is obtained from A by interchanging the i-th and the j-th row
where i 6= j, then |D| = −|A|.

4. When A is upper (or lower) triangular, then |A| is equal to the product
of the diagonal entries, i.e. |A| =

∏n

i=1 Aii.

Theorem 14 Let A and B be n-square matrices, n ≥ 1. Then |AB| =
|A||B|; that is, the determinant respects multiplication when looked at as a
map from n-square matrices into the real (or complex) numbers.

Theorem 15 A square matrix is invertible if and only if its determinant is
non-zero.
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8 Eigenvectors and eigenvalues

How would you describe the reflection Sl in the line l depicted below?

l

P

Q

R

S Q

S P S R

l

ll

The first point to note is that we need to choose the coordinates. This
involves

1. choosing an origin O, and

2. choosing two other points E1 and E2 such that O, E1, and E2 do not
lie on a line.

Let ei be the vector from O to Ei, i = 1, 2. Then every point in the plane
can be expressed as a linear combination of e1 and e2. Now there is some
hope that we can describe Sl. Hopefully we can do this with a matrix.

Since every matrix mapping leaves the origin fixed, and l is fixed by Sl, we
need to choose the origin on the reflecting line l, if we want to have any
chance of finding a matrix describing Sl.

Now we look at the images Sle1 and Sle2 of e1 respectively e2, and express
them in terms of our coordinates, say

Sle1 = a11e1 + a21e2, and Sle2 = a12e1 + a22e2.

It is no coincidence that this looks familiar. Most often, our favourite choice
for E1 and E2 is such that e1 and e2 are orthogonal to each other and of
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length one. However, one could choose any coordinate system. But if you

think of e1 and e2 as

(

1
0

)

and

(

0
1

)

, then

(

a11 a12

a21 a22

)

describes the reflection

Sl with respect to the coordinates given by e1 and e2. So assume we choose
E1 and E2 as in the following picture.

S El 2

S e1l

P

S Pl

e
e2

1

E
1

S El 1

2E

O

S e2l

l

Then we find that Sle1 = 1
3
e1 − 4

3
e2 and Sle2 = −2

3
e1 − 1

3
e2. So with respect

to this choice of coordinates, Sl is given by

(

1/3 −2/3
−4/3 −1/3

)

.

Having this freedom in choosing coordinates, we should take e1 and e2, or
equivalently E1 and E2, so that their images are easy to express as linear
combinations. Since l is fixed, it seems clever to take E1 on the line l, for
then Sle1 = e1. If next we choose E2 on a line through O and orthogonal to l,

then Sle2 = −e2. So with this choice of coordinates, Sl is given by

(

1 0
0 −1

)

.

This last description of Sl has a very simple form; it is just a diagonal matrix.
In this case the images of the coordinate vectors are just multiples of these.
This motivates the following definition.

A vector v is called an eigenvector for the matrix A if v 6= 0 and Av = αv
for some real (or complex) number α. In case v is an eigenvector, α is its
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corresponding eigenvalue. An arbitrary scalar α is an eigenvalue of A if A
has an eigenvector with eigenvalue α.

Example. Take the matrix S =

(

1/3 −2/3
−4/3 −1/3

)

from above. Now it should

be true that a point on the line l is fixed because we believe that S describes
the reflection in l. From the picture above we see that v = e1 − e2 is a point
on the line l. So what is the image of v under S? The answer is

Sv = Se1 − Se2 =
1

3
e1 −

4

3
e2 − (−2

3
e1 −

1

3
e2) = e1 − e2 = v,

or directly in matrix notation

(

1/3 −2/3
−4/3 −1/3

)(

1
−1

)

=

(

1
−1

)

. Thus v =

e1 − e2 is an eigenvector of S with corresponding eigenvalue 1.

Suppose that α is an eigenvalue of the matrix A. Let v be an eigenvector
of A with eigenvalue α. Then Av = αv implies Av − αv = (A − αI)v = 0.
Since v 6= 0 this means that A − αI is not invertible, or equivalently, that
|A − αI| = 0.

Let A be a square matrix, and let x be a variable. The characteristic poly-
nomial of A is defined as |A − xI| and it will be denoted by χA(x). The
previous paragraph says that an eigenvalue of the matrix A must be a root
(or zero) of χA(x).

Example. Again take S =

(

1/3 −2/3
−4/3 −1/3

)

. Then

χS(x) =

∣

∣

∣

∣

(

1/3 − x −2/3
−4/3 −1/3 − x

)∣

∣

∣

∣

= (1/3 − x)(−1/3 − x) − 8/3
= x2 − 1
= (x − 1)(x + 1).

So the characteristic polynomial of S is x2 − 1 and the possible eigenvalues
are 1 and −1.

Theorem 16 The eigenvalues of the square matrix A are the zeros of the
characteristic polynomial of A.

Proof. We saw above that an eigenvalue must be a root of the characteristic
polynomial. For the converse suppose that α is a root of the characteristic
polynomial, then |A − αI| = 0, and hence A − αI is not invertible, whence
(A−αI)x = 0 has more than one solution. And at least one of these solutions,
w say, is different from 0. It is easy to see that w is an eigenvector of A with
eigenvalue α. The theorem is proved.
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Lecture 9
Eigenvectors and eigenvalues revisited

8.1 A typical problem 3

In order to get more familiar with the important notions introduced in Lec-
ture 8, let us work out an example solution of the following

Problem. Let K be a real number and let A =





K −K 0
−K 2K −K
0 −K K



. Find

the eigenvalues and eigenvectors of A.
Solution. First we compute the characteristic polynomial of A:

χA(x) = |A − xI3| =

∣

∣

∣

∣

∣

∣





K − x −K 0
−K 2K − x −K
0 −K K − x





∣

∣

∣

∣

∣

∣

= (K − x)((2K − x)(K − x) − K2) + K(−K(K − x))
= (K − x)(x2 − 3Kx)
= x(K − x)(x − 3K).

Now the eigenvalues are the roots of χA(x), i.e., 0, K, and 3K. In order to
find the eigenvector with eigenvalue 0 we have to find a nontrivial solution

of Ax = 0. It follows easily that





1
1
1



 is an eigenvector with eigenvalue 0.

A nontrivial solution of 0 = (A−KI3)x =





0 −K 0
−K K −K
0 −K 0



x is an eigen-

vector with eigenvalue K, eg





1
0
−1



.

Finally,





1
−2
1



 is a solution of





−2K −K 0
−K −K −K
0 −K −2K



 x = 0, and hence an

eigenvector with eigenvalue 3K.

3If this is the last time you encounter this type of question in your physics degree, this
isn’t worth the paper it’s written on.
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8.2 A theorem about characteristic polynomials

Theorem 17 Let A be an n-square matrix and let T be an invertible n-
square matrix. Then A and TAT−1 have the same characteristic polynomial,
and hence also the same eigenvalues.

Proof. This follows from

|TAT−1 − xIn| = |TAT−1 − xTInT−1| = |T (A − xIn)T−1| = |A − xIn|,

where the last equality follows from Theorem 14.
Note that we haven’t proved Theorem 14. However, Theorem 17 is easy to
understand conceptually by thinking about the effect of passing from A to
TAT−1. And that is precisely what we do next.

8.3 Choice and change of coordinates

In our investigation of the reflection in Lecture 8 we saw that we had to
choose coordinates in order to describe the reflection by a matrix.

In mathematical terms, a choice of coordinates for a vector space V is a
basis of V . By definition, a basis of V is a maximal sequence of linearly
independent vectors B =⊂ V . Recall that the number of elements in B is,
by definition, the dimension of V .

Fact 1. When B is a basis of V , then every vector v ∈ V has a unique
expression as a linear combination of the basis vectors bi ∈ B, i.e, there are
unique vi ∈ IR (or complex vi) with v =

∑n

i=1 vibi, where n is a positive
integer less than the dimension of V .4

Fact 2. Assume b1, . . . , bn and c1, . . . , cn are both bases of the vector space
V , then there is a linear mapping 5 φ : V −→ V with φ(bi) = ci.

4In an infinite dimensional vector space every vector is a linear combination of finitely
many basis vectors.

5See footnote on page 13.
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Lecture 10
Coordinates continued

Fact 3. Every linear mapping φ : V −→ V can be described by a matrix
once a basis of V has been chosen.

This goes as follows. Let φ : V −→ V be a linear mapping and let B =
{b1, b2, . . . , bn} be a basis for V . Let aij for 1 ≤ i, j ≤ n be real (or complex)
numbers satisfying

φ(bj) = a1jb1 + a2jb2 + · · ·+ anjbn =

n
∑

i=1

aijbi,

that is aij is the coefficient of bi in the (unique) expression of φ(bj) as linear
combination of the bk. Now let A be the n-square matrix with (A)ij = aij .
Then A describes φ with respect to the basis B.

This becomes clearer when one views bj as























0
...
0
1
0
...
0























, where the one is in the j-th

row. For now Abj is the j-th column of the matrix A which is nothing but
φ(bj) expressed as linear combination of the bk.

Fact 4. When A is an invertible n-square matrix and B = {b1, b2, . . . , bn} is
a basis of V , then AB = {Ab1, Ab2, . . . , Abn} is also a basis of V .

Now suppose we have a matrix A describing a linear mapping φ : V −→ V
with respect to the basis B = {b1, . . . , bn} of V . Let C = {c1, . . . , cn} be
another basis. This poses
Problem. Which matrix describes φ with respect to the basis c1, . . . , cn of
V ?

Let C be the matrix which describes the linear mapping bi 7→ ci, 1 ≤ i ≤ n
with respect to the basis B. Then C−1AC is exactly the matrix that describes
φ with respect to c1, . . . , cn. Summing up we have.

Theorem 18 Let B = {b1, . . . , bn} and C = {c1, . . . , cn} both be bases of
the vector space V . Let C be the matrix which describes the linear mapping
bi 7→ ci, 1 ≤ i ≤ n with respect to the basis B, and let A be any n-square
matrix. Then A and C−1AC describe the same linear mapping but with
respect to the bases B and C respectively.
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We can now understand Theorem 17 as follows. A linear mapping φ has
eigenvalues and these are independent of the basis we choose to describe the
linear mapping by a matrix; the eigenvalues of any matrix describing φ are
the eigenvalues of the linear mapping φ. Since TAT−1 and A describe the
same linear mapping with respect to different bases (read T = C−1), it must
be true that they have the same eigenvalues.

The point is that

(

2
−3

)

has no meaning without choice of coordinates, but

once a basis {b1, b2} is chosen, we interpret

(

2
−3

)

as 2b1 + 3b2.

Example. Consider the figure below

2b

1b

v

1c
2c

Here B = {b1, b2} and C = {c1, c2} are both basis of IR2. The vector v is given

by

(

1
2

)

with respect to the basis B, i.e. v = b1 + 2b2. But with respect to

the basis C, the same vector v is given by

(

−2
1

)

, because v = −2c1 + c2. So

with respect to C,

(

1
2

)

describes the vector c1 + 2c2 which is quite different

from v.

With a ruler you can easily verify that

c1 = −2

7
b1 −

12

7
b2 and c2 =

3

7
b1 −

10

7
b2.
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In other words c1 =

(

−2/7
−12/7

)

with respect to B and c2 =

(

3/7
−10/7

)

with

respect to B.

Thus, with respect to the basis B, the linear mapping which sends b1 to c1

and b2 to c2 is described by the matrix

(

−2/7 3/7
−12/7 −10/7

)

; that is the matrix

whose columns represent c1 and c2 with respect to B.

Up to now we have mostly interpreted Av, where A is an n-square matrix

and v =











v1

v2
...

vn











, as the image of v under the matrix mapping defined by the

matrix A.

When A is invertible there is another way of interpreting Av, namely as the

vector represented by v =











v1

v2
...

vn











with respect to the basis consisting of the

columns of A which, in turn, are expressed with respect to some fixed basis,
B say. This is because

A











v1

v2
...

vn











= v1A1 + v2A2 + · · · + vnAn,

where Ai denotes the i-th column of A.

Now let C and A be n-square matrices with C invertible. Clearly C−1ACv =
w is equivalent to ACv = Cw, which we write as A(Cv) = (Cw). Clearly
Cw is the image of Cv under A, and by the previous paragraph Cw and Cv
are the vectors represented by w and v with respect to the basis C consisting
of the columns of C, respectively. This means that C−1AC is the matrix
which describes the same mapping as A but with respect to the basis C.
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Lecture 11

9 Coupled pendulums: an application

Consider two pendulums of mass m and length l coupled via a spring with
spring constant D. We assume that they both move in the same plane. The
situation is thus as in the following figure.

α α 12

We would like to describe the behaviour of this system in time; that is we
want functions α1(t) and α2(t) telling us how the pendulums move. Below
we write α̇ for dα

dt
, the derivative of α with respect to time.

We proceed as follows:
(1) We find the Lagrange function L(αi, α̇i, t) for this situation.
(2) From L we obtain two differential equations

d

dt

∂L

∂α̇i

− ∂L

∂αi

= 0, i = 1, 2. (21)

(3) We solve the differential equations.

In general, the Lagrange function has the form

L(xi, ẋi, t) = T (xi, ẋi, t) − U(xi, t),

where the first term T is the kinetic energy and U the potential energy of the
system, and xi is the coordinate vector of the i-th body (or particle) under
consideration.

For small oscillations of the pendulums, that is small αi, sin αi is roughly αi,
and we use this approximation in order to get a linear problem.
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It turns out that for the coupled pendulums

L(αi, α̇i, t) =
1

2
ml2(α̇2

1 + α̇2
2) −

1

2
mgl(α2

1 + α2
2) −

1

2
Dl2(α1 − α2)

2,

where T is the first summand and the other two make up U . Using (21) we
obtain the following two differential equations.

d

dt
ml2α̇1 + mglα1 + Dl2(α1 − α2) = 0, and

d

dt
ml2α̇2 + mglα2Dl2(α2 − α1) = 0.

Carrying out the final derivation and dividing through by ml2 we get

α̈1 + g/lα1 + D/m(α1 − α2) = 0, and α̈2 + g/lα2 + D/m(α2 − α1) = 0.

In matrix notation this becomes

0 =
d

dt

(

α1

α2

)

+

(

g/l + D/m −D/m
−D/m g/l + D/m

)(

α1

α2

)

.

Putting

(

α1

α2

)

=

(

v1

v2

)

eiωt, where i2 = −1, we obtain

0 =

(

g/l + D/m − ω2 −D/m
−D/m g/l + D/m − ω2

)(

v1

v2

)

, (22)

where we have already divided through by eiωt which is never zero. This
equation has a non-trivial solution if and only if the determinant of the
matrix is zero. We have

∣

∣

∣

∣

(

g/l + D/m − ω2 −D/m
−D/m g/l + D/m − ω2

)∣

∣

∣

∣

= (g/l + D/m − ω2)2 − D2/m2

= ω4 − 2ω2(g/l + D/m) + (g/l + D/m)2 − D2/m2,

and the only values for ω2 which make this zero are

ω2 = (g/l + D/m) ±
√

D2/m2 =

{

g/l = ω2
1

g/l + 2D/m = ω2
2

For these two values of ω2 we can now solve the equation (22):

ω2
1 :

(

D/m −D/m
−D/m D/m

)(

v1

v2

)

= 0 is solved by v1 =

(

1
1

)
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ω2
2 :

(

−D/m −D/m
−D/m −D/m

)(

v1

v2

)

= 0 is solved by v2 =

(

1
−1

)

Thus we get the following four special solutions, because each of the two
values for ω2 gives rise to two solutions, one with ω and the other with −ω.

s±1 =

(

1
1

)

e±iω1t and s±2 =

(

1
−1

)

e±iω2t.

Every general solution is a linear combination, or superposition in physics
jargon, of the four special solutions, and thus is of the form

s = a1s
+
1 + b1s

−
1 + a2s

+
2 + b2s

−
2

=

(

a1e
iω1t + b1e

−iω1t + a2e
iω2t + b2e

−iω2t

a1e
iω1t + b1e

−iω1t − a2e
iω2t − b2e

−iω2t

) .

Interpretation. Clearly there is not much to say about a general solution,
as it is simply too difficult. But the special solutions correspond to very
natural movements of the pendulums, namely synchronous and asynchronous
oscillation. By this I mean that both either always move in the same direction
or they always move in opposite direction. The first case corresponds to s±1
and then the spring has no effect, as ω1 = ±

√

g/l which is just the frequency
of a single pendulum of length l. The second case corresponds to s±2 and here
the frequency depends on D and also on m, as ω2 = ±

√

g/l + D/m. These
special solutions are called eigenstates of the system and the corresponding
frequencies are the eigenfrequencies. This terminology should be clear from
(22) which has the form (A − ω2I2)v = 0.
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Lecture 12

10 Scalar product and orthogonal matrices

The aim of this lecture is to explain how the geometry in IRn can be defined
entirely in terms of linear algebra.

For v, w ∈ IRn, their dot product or scalar product is defined by

v.w = v1w1 + v2w2 + · · · + vnwn =

n
∑

i=1

viwi.

Properties. For all v, w, v1, v2, w1, w2 ∈ IRn and α ∈ IR the following hold.

1. (v1 + v2).w = v1.w + v2.w

2. (αv).w = α(v.w

3. v.(w1 + w2) = v.w1 + v.w2

4. v.(αw) = α(v.w

5. v.w = w.v

6. v.v ≥ 0 and v.v = 0 if and only of v = 0

We now define the length or norm of v ∈ IRn by

‖v‖ =
√

v.v.

It follows from 6. above that ‖v‖ = 0 if and only if v = 0.

And this allows us to define the distance between two vectors v and w by

d(v, w) = ‖v − w‖.

The following is an often used result.

Theorem 19 (Cauchy-Schwarz inequality) For all v, w ∈ IRn,

|v.w| ≤ ‖v‖ ‖w‖

holds true.
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Proof. First, if w = 0, then both sides are zero, and we are done.
So we assume w 6= 0 and put λ = w.w and µ = −v.w. Then

0 ≤ (λv + µw).(λv + µw) (by property 6.)
= λ2v.v + 2λµv.w + µ2w.w (using properties 1.-5.)
= λ ((w.w)(v.v) − 2(v.w)2 + (v.w)2) (by definition of λ and µ)
= λ(‖w‖2‖v‖2 − (v.w)2) (by definition of norm)

Since λ > 0, it follows that (v.w)2 ≤ ‖w‖2‖v‖2 which implies the result,
as the square root is monotone increasing, i.e.

√
y >

√
z whenever y > z,

0 ≤ y, z ∈ IR.

The Cauchy-Schwarz inequality implies the
triangle inequality: ‖v + w‖ ≤ ‖v‖ + ‖w‖.
This follows from monotony of the square root again and

‖v + w‖2 = (v + w).(v + w)
= v.v + 2v.w + w.w (by properties 1.-5.)
≤ ‖v‖2 + 2‖v‖ ‖w‖ + ‖w‖2 (by Cauchy-Schwarz ineq.)
= (‖v‖ + ‖w‖)2.

Finally we can define angles which besides distance are the other main feature
of geometry. Again let v, w ∈ IRn and assume v 6= 0 6= w. By the Cauchy-
Schwarz inequality, we have

−1 ≤ v.w

‖v‖ ‖w‖ ≤ 1.

So there is a unique α ∈ [0, π] with

cos α =
v.w

‖v‖ ‖w‖ ,

and we define the angle between v and w to be this α.

Observation. If, for v ∈ IRn, v =







v1
...
vn






say, we define vt to be the row

vector (v1, v2, . . . , vn), then the dot product v.w becomes the matrix product
vtw.

In IRn we have now defined the geometric concepts of length, distance, and
angles entirely in terms of the dot product, or matrix multiplication if you
like. And it becomes an interesting question which n-square matrices preserve
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this geometry when we view them as mappings from IRn to itself. More
precisely, which matrices A satisfy (Av).(Aw) = v.w for all v, w ∈ IRn?

In terms of matrix multiplication this question is the following. Which ma-
trices A satisfy (Av)tAw = vtw for allv, w ∈ IRn? By Question 3 on problem
sheet 6, (AB)t = BtAt for all matrices for which AB is defined. Here At is,
by definition, the matrix whose i-th row is the i-th column of A and it is
called the transpose of A. Hence the question boils down to the problem of
finding those matrices A for which vtAtAw = vtw holds for all v, w ∈ IRn.

It turns out that these are precisely those matrices satisfying At = A−1

which are called orthogonal matrices. One reason for this name is the fact
that columns of an orthogonal matrix constitute a so called orthonormal
basis; that is each basis vector has length one, and distinct basis vectors are
orthogonal to each other. Notice that non-zero vectors v and ware orthogonal
if and only if v.w = 0. Orthogonal matrices come up in different areas of
physics, basically because they describe those transformations of Euclidean
n-space which preserve the geometry.

WARNING! All the material of Section 10 is only valid in IRn. In complex
vector spaces things get a little more difficult, one reason being that property
6. (which we used a couple of times) does not hold any more, as can be seen

from (i, i)

(

i
i

)

= −2 for instance.
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