2S1 Problem Sheet 1

November 14th, 2003, Lecturer: Claas Röver

1. For the following functions determine their domains, decide where they are continuous and find their partial derivatives.
(a) $f(x, y)=\frac{x^{2} y}{x-y}$
(b) $f(x, y)=x^{2} \sin y+y \cos x$
(c) $f(x, y)=\ln (x y)$
(d) $f(x, y)=\frac{1}{3} e^{x^{2}+y^{2}}$
(e) $\quad f(x, y)=2|x|-3|y|$
(f) $f(x, y)=\sqrt{x^{2}+y^{2}}$
2. In your own words, describe what the parial derivatives of a function of two variables describes.
3. Determine the partial derivatives of the following functions
(a) $f(x, y)=\sin (x y-3 x)$
(b) $f(x, y)=\left(x-9 y^{2}\right) e^{-3 x+4 y}$.
(c) $f(x, y)=(\ln x) \cos \left(2 x^{3}\right)$
(d) $f(x, y)=\frac{2 e^{-x^{2}}}{x+y}$
4. State the condition for a function of two variables to be differentiable and give a verbal argument for the fact that a differentiable function must be continuous.
5. Let $x(t)=3 t, y(t)=-t^{2}$ and $f(x, y)=4 x y-2 x^{2}$. Find $\frac{\partial f}{\partial t}$.
6. Sketch the level curves of the following functions for four different values of your choice.
(a) $f(x, y)=x^{2}+y^{2}$
(b) $f(x, y)=3 x-y$
(c) $f(x, y)=x^{3}+2 y$
(d) $\quad f(x, y)=x e^{y}$
7. Give a description of the plane in \mathbb{R}^{3} which contains the three given points P, Q and R, and find the point where it intersects the y-axis.

$$
\begin{aligned}
& \text { (a) } \quad P=(0,1,1), \quad Q=(1,2,0), \quad R=(1,1,2) \\
& \text { (b) } P=(-1,0,2), \quad Q=(3,-3,0), \quad R=(2,-2,-1) \\
& \text { (c) } \quad P=(-2,1,0), \quad Q=(5,0,1), \quad R=(-1,4,2)
\end{aligned}
$$

8. For each plane in the previous problem find a unit vector orthogonal to the plane.
9. Find the extrem points, that is relative maxima and minima, of the following functions of two variables.
(a) $f(x, y)=2 x^{2}+y^{2}-x y+7 y$
(b) $f(x, y)=-x y e^{-\frac{1}{2}\left(x^{2}+y^{2}\right)}$
(c) $f(x, y)=y^{2}-x y+2 x+y+1$
(d) $\quad f(x, y)=x \sin y$
10. Describe in words what the gradient of a function of two variables is.
11. Determine the gradients of the functions in Problem 6.
12. (a) Find the directional derivative of $f(x, y)=\frac{5}{x^{2}+y^{2}}$ at the point P towards the origin when

$$
\text { (i) } \quad P=(2,1) \quad \text { (ii) } \quad P=(-1,2) \quad \text { (iii) } \quad P=(\sqrt{5}, 0)
$$

(b) Find the directional derivative of $f(x, y)=A x^{2}+B x y+C y^{2}$ at (a, b) towards (b, a), where A, B and C are constants.
13. Give a reason why you always got the same answer in part (a) of the previous problem.
14. What is the maximal volume of a rectangular box which fits into the sphere of radius r; the sphere is given by $x^{2}+y^{2}+z^{2}=r^{2}$.

