2S1 Sample Scholarship Exam

January 23rd, 2004, Lecturer: Claas Röver

1. Find the area of the region R which is bounded by the following four curves

$$
y=x, \quad y=\frac{1}{3} x, \quad y=\frac{1}{x} \quad \text { and } \quad y=\frac{2}{x} .
$$

2. State the first and second partial derivative tests for relative maxima, relative minima and saddle points of a function $f(x, y)$.
A company is asked to build a closed rectangular box whose volume is $72 \mathrm{~m}^{3}$ using two kinds of material. The material to be used for the top and bottom costs 27 euros per square meter and the sides cost 9 euros per square meter. Find the dimensions and the price of the cheapest such box.
3. Let f be a function of the variables x and y with continuous second partial derivatives. If $x=u^{2}+v^{2}$ and $y=c u v$, where c is a nonzero constant, show that

$$
\frac{\partial^{2} f}{\partial u \partial v}=c\left(\frac{4}{c^{2}} y \frac{\partial^{2} f}{\partial^{2} x}+y \frac{\partial^{2} f}{\partial^{2} y}+2 x \frac{\partial^{2} f}{\partial x \partial y}+\frac{\partial f}{\partial y}\right)
$$

4. State a formula expressing the relationship between the directional derivative of f in the direction of a unit vector u and the gradient of f. What does this mean for points at which the gradient is zero? Find the directional derivatives of $f(x, y)=\frac{9}{x^{2}+y^{2}}$ at the points $P=(1,1), Q=(1,-1)$ and $R=(0, \sqrt{2})$, each time in the direction towards the origin. Explain, why you got the same answer in all three cases.
5. Evaluate

$$
\int_{0}^{4} \int_{\sqrt{y}}^{2} e^{x^{3} / 8} d x d y
$$

by first changing the order of integration.
6. Find the volume of the solid which is enclosed between the cone $f(x, y)=$ $\sqrt{x^{2}+y^{2}}$ and the paraboloid $g(x, y)=6-x^{2}-y^{2}$.
7. A satellite in the shape of an ellipsoid $4 x^{2}+y^{2}+4 z^{2}=9$ has gone out of control crashes back to earth. As it enters the atmosphere it heats up, and the temperature T on its surface is found to be $T=x^{2} y$. Find the hottest points on the satellite's surface using the method of Lagrange multipliers.

