2S1 Sample Scholarship Exam

February 16th, 2004, Lecturer: Claas Röver
In the real exam you only need to do seven questions!

1. Define what is meant by the phrase " $\vec{F}(x, y, z)$ is a conservative vector field in the region D ".
Show that the vector field $\vec{F}(x, y, z)=\left(3 y+z, 3 x-2 z^{2}, x-4 y z\right)$ is conservative everywhere in \mathbb{R}^{3} and compute the line integral

$$
\int_{C} \vec{F} \cdot d \vec{r}
$$

where C is the parametric curve given by $x(t)=t, y(t)=e^{t}$ and $z(t)=\sin (\pi t)$ with $0 \leq t \leq 1$.
2. State the first and second partial derivative tests for relative maxima, relative minima and saddle points of a function $f(x, y)$ of two independent variables. Define a critical point.
Find all local maxima, local minima and saddle points of the function

$$
f(x, y)=-\frac{1}{4} x^{4}+\frac{2}{3} x^{3}+4 x y-y^{2} .
$$

3. State the formula for the surface area of a parametric surface. Then determine the constant u - and constant v-curves of the parametric surface given by $x(u, v)=u+v, y(u, v)=2 v$ and $z(u, v)=\cos u$, and compute the area of the surface when $0 \leq u \leq \frac{\pi}{2}$ and $0 \leq v \leq \sin u \cos u$.
4. Evaluate the double integral

$$
\iint_{R} \frac{x}{2 y} d A
$$

where R is the region bounded by the four curves $y=4-x^{2}, y=2-\frac{1}{2} x^{2}$, $y=x^{2}$ and $y=3 x^{2}$.
5. Let S be the surface given by $z=f(x, y)=\sqrt{x^{2}+9 y^{2}}$ and let P be the point $(2,1,0)$. Determine the point Q on the surface S which is closest to P and give an equation for the plane which goes through P, Q and the origin.
6. Let \mathbf{F} be a three dimensional vector field whose component functions have continuous second partial derivatives. Prove that the divergence of the curl of \mathbf{F} is zero.
7. Evaluate the line integral

$$
\int_{C} e^{x} \sin y d x+e^{x} \cos y d y
$$

where C is the closed curve consisting of the semicircle $y=\sqrt{1-x^{2}}$ and the interval $[-1,1]$.
8. Fix $a \geq 0$ and let C be the curve defined by $x^{3}+y^{3}=3 a x y$. Show that C can be parametrised by putting $x(t)=\frac{3 a t}{1+t^{3}}$ and $y(t)=\frac{3 a t^{2}}{1+t^{3}}$ where $t \neq-1$. Then argue that C forms a loop in the first quadrant $(x \geq 0$, $y \geq 0$) and compute the area enclosed by this loop.

