# 3E1 Problem Sheet 1 

October 13-20, 2003
Lecturer: Claas Röver

1. Determine the Fourier coefficients $a_{0}, a_{n}$ and $b_{n}, n \geq 1$, for the following functions $f(x)$.
(a) $f(x)=\frac{1}{3} \sin x$
(b) $f(x)=\cos 4 x$
2. Sketch the graph of the $2 \pi$-periodic function $f(x)$ which is determined by

$$
f(x)= \begin{cases}1+\frac{x}{\pi}, & -\pi<x \leq 0 \\ 1-\frac{x}{\pi}, & 0 \leq x<\pi\end{cases}
$$

and find its Fourier coefficients. (Show your working!) Thus express $f(x)$ in the form $f(x)=a_{0}+\sum_{n=1}^{\infty}\left(a_{n} \cos n x+b_{n} \sin n x\right)$. Hint: $\int x \cos n x d x$ can be computed using integration by parts.
3. Suppose that $f(x)$ and $g(x)$ are $2 \pi$-periodic functions with Fourier coefficients $a_{0}^{(f)}, a_{n}^{(f)}$ and $b_{n}^{(f)}$ and $a_{0}^{(g)}, a_{n}^{(g)}$ and $b_{n}^{(g)}$ respectively, where $n \geq 0$
(a) Prove that $h(x)=\mu f(x)+\nu g(x)$ is a $2 \pi$-periodic function for all real constants $\mu$ and $\nu$.
(b) Can you give a formula for the Fourier coefficients of $h(x)$ in terms of those for $f(x)$ and $g(x)$ ?
(c) Prove that $k(x)=f(x) g(x)$ is a $2 \pi$-periodic function.
(d) Can you give a formula for the Fourier coefficients of $k(x)$ in terms of those for $f(x)$ and $g(x)$ ?
4. (Optional home work) Use a graphing utility, eg. powerful calculator or Mathematica, to plot graphs for the first five partial sums of the Fourier series of the triangle function obtained in question 2. The partial sums are obtained by taking only finitely many initial terms of the infinite $\operatorname{sum} f(x)=a_{0}+\sum_{n=1}^{\infty}\left(a_{n} \cos n x+b_{n} \sin n x\right)$.
The idea is to see how $f(x)$ gets approximated more accurately with each additional summand.

