3E1 Problem Sheet 10

February 2-8, 2004
Lecturer: Claas Röver

1. (a) Let n be an integer. Show that if z is a complex number with $z^{n}=$ 1 , then $\bar{z}^{n}=1$ as well, where \bar{z} denotes the complex conjugate of z.
Hint: Use the polar coordinate representation of z.
(b) Find all complex numbers z satisfying $z^{3}=1$ and draw them in the complex plane. Give an argument why, if you sum them all up you get zero.
Hint: The cosine of 60 degrees is $\frac{1}{2}$.
2. Let $f(z)$ be an analytic function. Prove that, if $\operatorname{Im}(f(z))=c=$ const., then $f(z)=C=$ const.
3. Decide at which points the function $f(z)=|z|$ is differentiable. (Recall that the absolute value $|z|$ is defined by $\sqrt{x^{2}+y^{2}}$ when $z=x+i y$.)
