3E1 Problem Sheet 11*

February 9-15, 2004
Lecturer: Claas Röver

1. Find the image of the following regions under the mapping $f(z)=e^{z}$.
(a) The strip of all complex numbers z with $-\pi<\operatorname{Im}(z)<0$ and $\operatorname{Re}(z) \geq 0$.
(b) The square with vertices $0, \frac{i \pi}{2}, \frac{\pi}{2}$ and $\frac{\pi}{2}(1+i)$.

Give a mathematical description, as well as a sketch of the regions and their images.
2. State the definitions of the complex sine and cosine functions.

Recall that $\cosh y=\frac{1}{2}\left(e^{y}+e^{-y}\right)$ and $\sinh y=\frac{1}{2}\left(e^{y}-e^{-y}\right)$ for $y \in \mathbb{R}$.
Now verify the following identities where $z=x+i y$.
(a) $\sin z=\sin x \cosh y+i \cos x \sinh y$.
(b) $|\sin z|^{2}=\sin ^{2} x+\sinh ^{2} y$. You may use $1=\cosh ^{2} y-\sinh ^{2} y$.

Say in words what the formula in (a) expresses.
3. State the Cauchy-Riemann equations for an analytic function $f(z)=$ $g(x, y)+i h(x, y)$, where $z=x+i y$ and g and h are real functions of two variables.
Now let $f(z)$ be an analytic function such that $\operatorname{Re}(f(z))=c=$ const. Prove that $f(z)=C=$ const. (C may be a complex number.)

[^0]
[^0]: *Remember that Question 1 is not neccessarily the easiest!

