3E1 Problem Sheet 13

February 23-29, 2004
Lecturer: Claas Röver

1. State the definition of a simply connected subset of the complex plane. Sketch the following subsets of \mathbb{C} and decide whether they are simply connected; justify your answer
(a) $\{z \in \mathbb{C}|1<|z|<2\}$
(b) $\{z \in \mathbb{C}|1<|z|<2,0 \leq \arg (z) \leq \pi\}$
(c) $\{z \in \mathbb{C}|z \neq 0,|z| \leq 3\}$
2. Evaluate the following complex integrals, where C is the unit circle traversed counterclockwise from 1.
(a) $\int_{C} 2 z^{2}+3 z-i d z$
(b) $\int_{C} \operatorname{Re}(z) d z$

Hint: $\cos ^{2} \alpha=\frac{1}{2}(1+\cos (2 \alpha))$.
3. Let $f(z)=\frac{1}{z^{2}}$. Decide where $f(z)$ is analytic and compute the integral

$$
\int_{C} f(z) d z
$$

where
(a) C is the upper semi-circle of radius r centred at the origin and traversed counterclockwise,
(b) C is the lower semi-circle of radius r centred at the origin and traversed clockwise,
(c) C is the circle of radius r about the origin traversed counterclockwise.

