# 3E1 Problem Sheet 14 <br> March 1-7, 2004 <br> Lecturer: Claas Röver 

1. Use Cauchy's integral formula to evaluate the integral

$$
\int_{C} \frac{z^{2}}{z^{2}+1} d z
$$

where $C$ is the counterclockwise oriented circle of radius 1 centred at $i$.
2. Use Cauchy's integral formula to evaluate the integral

$$
\int_{C} \frac{e^{z}}{z^{3}} d z
$$

where $C$ is the counterclockwise oriented circle of radius 1 centred at the origin.
3. State the definition of a harmonic real function of two real variables. Then verify that

$$
u(x, y)=x-\frac{y}{x^{2}+y^{2}}
$$

is harmonic in $\mathbb{R}^{2} \backslash\{0\}$ and find a complex function whose real part is equal to $u(x, y)$ and which is analytic in $\mathbb{C} \backslash\{0\}$.

