3E1 Problem Sheet 15
March 29 - April 4, 2004
Lecturer: Claas Röver

1. Find the centre and the radius of convergence of the following power series
(a)

$$
1+\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{2}}(z-2)^{n}
$$

(b)

$$
\sum_{n=0}^{\infty} n^{3} z^{n}
$$

(c)

$$
\sum_{n=0}^{\infty}\left(\frac{4-2 i}{1+5 i}\right)^{n}(z-1-i)^{n}
$$

2. (a) Determine the Taylor series of $f(z)=\cos z$ with centre π.
(b) Recall that the Maclaurin series of

$$
f(z)=\frac{1}{1-z} \quad \text { is } \quad \sum_{n=0}^{\infty} z^{n}
$$

Use this to determine the Maclaurin series of

$$
\text { (i) } g(z)=\frac{1}{z+1} \quad \text { and } \quad \text { (ii) } \quad h(z)=\frac{1}{(z-1)^{2}}
$$

(c) Why is there no Maclaurin series for $f(z)=\frac{1}{z}$.
3. Let $f(z)=\frac{-z}{z+1}$. Show that for every complex number z with negative imaginary part, the imaginary part of $f(z)$ is positive.

