3E1 Problem Sheet 17

April 19 – 25, 2004

Lecturer: Claas Röver

- 1. Consider the network N in Fig. 1 where an edge label c, f means that the corresponding edge has capacity c and carries the flow f.
 - (a) What is the total flow in N?
 - (b) Find a flow augmenting path in N; give its vertices in order. By how much can you increase the total flow in N at most using that flow augmenting path?
 - (c) What is the capacity of the cut set consisting of the edges (2, 3), (3,6), (6,4), (5,8)and (8,9)?

2. Solve the following linear optimisation problem geometrically. Maximise $f(x_1, x_2) = 20x_1 + 30x_2$ subject to the constraints

(1)
$$4x_1 + 3x_2 \ge 12$$

(3) $x_2 \le 6$

(2)
$$x_1 - x_2 \ge -3$$

(4) $2x_1 - 3x_2 \le 0$

(3)
$$x_2 \le 6$$

$$(4) \quad 2x_1 - 3x_2 \le 0$$

3. A company produces three types of glass, flint glass (G_1) , German crystal-glass (G_2) and crown-glass (G_3) . The amount of raw material (in kg) needed for 200kg of glass and the price per kg (in Euro), depending on the type, are given in the table below.

	sand	pearlash	arsenic	red-lead	nitre	price
G_1	120	35	6	40	13	35
G_2	120	46	6	0	7	60
G_3	120	60	1	0	30	70

Per day they have 2000kq of sand, 450kq of pearlash, 50kq of arsenic, 150kq of red-lead and 180kq of nitre available.

Formulate a constrained optimisation problem in order to maximise the daily revenue, assuming all the glass can be sold, and transform it into normal form, by possibly introducing slack variables.