3E1 Problem Sheet 18

April 26 - May 2, 2004
Lecturer: Claas Röver

1. Bring the following linear optimisation problem into normal form and solve it by the simplex method.
Maximise $f\left(x_{1}, x_{2}\right)=20 x_{1}+30 x_{2}$ subject to the constraints

$$
\text { (1) } x_{2} \leq 6 \quad \text { (2) } \quad 2 x_{1}-3 x_{2} \leq 0
$$

2. Solve the following linear optimisation problem in normal form by the simplex method.
Maximise $f\left(x_{1}, x_{2}, x_{3}\right)=40 x_{1}+60 x_{2}+72 x_{3}$ subject to the constraints
(1) $120 x_{1}+80 x_{2}+106 x_{3}+x_{4}=1100$
(2) $30 x_{1}+45 x_{2}+54 x_{3}+x_{5}=450$
(3) $5 x_{1}+5 x_{2}+x_{3}+x_{6}=50$
(4) $40 x_{1}+x_{7}=120$
$x_{i} \geq 0$ for $1 \leq i \leq 7$
Solve this problem using the simplex method.
3. Evaluate the integral

$$
\int_{C} \frac{\sin z}{z^{2}-1} d z
$$

where z is a complex variable and
(a) C is the couterclockwise oriented circle of radius $\frac{1}{2}$ about the origin.
(b) C is the couterclockwise oriented circle of radius 3 about the origin.

