3E1 Problem Sheet 2

October 21-27, 2003
Lecturer: Claas Röver

1. Let $f(x)=A e^{\mu x}+B e^{-\mu x}, \mu \neq 0$.
(a) Show that $f(x)$ is a solution of the ordinary differential equation

$$
\frac{d^{2} u}{d x^{2}}-\mu^{2} u=0
$$

(b) Prove that, if $f(0)=f(L)=0$ for some positive real number L, then $A=B=0$.
2. Let $f_{n}(x)=\sin n x$, where n is a positive integer.
(a) Sketch, in one figure, the graphs of the functions

$$
f_{1}(x), \quad-\frac{1}{2} f_{2}(x) \quad \text { and } \quad \frac{1}{4} f_{4}(x)
$$

for values of x with $0 \leq x \leq 2 \pi$.
(b) What is the elementary period and the maximum height of $K f_{N}(x)$ where N is a positive integer and K any real number?
(c) With the help of part (a), sketch the graph of the function

$$
f(x)=\sin x-\frac{1}{2} \sin 2 x+\frac{1}{4} \sin 4 x .
$$

3. Recall from the very first lecture that the 2π-periodic function determined by

$$
f(x)= \begin{cases}0, & -\pi<x<0 \\ k, & 0<x<\pi\end{cases}
$$

where $k>0$ is constant, is given by the Fourier series

$$
\frac{k}{2}+\frac{2 k}{\pi} \sum_{n=1}^{\infty} \frac{1}{2 n-1} \sin (2 n-1) x
$$

Use this to obtain the Fourier series of the 2π-periodic function $g(x)$ which is determined by

$$
g(x)=\left\{\begin{array}{cl}
-1, & -\pi<x<-\frac{\pi}{2} \\
1, & -\frac{\pi}{2}<x<\frac{\pi}{2} \\
-1, & \frac{\pi}{2}<x<\pi
\end{array}\right.
$$

Justify your answer.

