3E1 Problem Sheet 3

October 27 - November 2, 2003
Lecturer: Claas Röver

1. Let f be the 2π-periodic function determined by

$$
f(x)=x^{2} \text { for }-\pi \leq x \leq \pi \text { and } f(x+2 \pi)=f(x), x \in \mathbb{R} .
$$

(a) Find the complex Fourier coefficients of f.
(b) Use (a) to obtain the real Fourier series of f.
(c) Give a reason why the complex Fourier coefficients computed in (a) are real numbers, rather than complex numbers.
2. Parseval's identity states that

$$
2 a_{0}+\sum_{n=1}^{\infty}\left(a_{n}^{2}+b_{n}^{2}\right)=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x)^{2} d x
$$

for every 2π-periodic function f with (real) Fourier coefficients $a_{n}(n \geq$ $0)$ and $b_{n}(n \geq 1)$ and such that the integral on the right exists. Use this to show that

$$
\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{6}
$$

3. Give a formula for the complex Fourier coefficients of a $2 L$-periodic function. Give reasons for your answer.
