3E1 Problem Sheet 4

November 3-9, 2003
Lecturer: Claas Röver

1. Recall that the representation of a function $f(x)$ by a Fourier integral is of the form

$$
f(x)=\int_{0}^{\infty} A(w) \cos w x+B(w) \sin w x d w
$$

(a) State the formulae for $A(w)$ and $B(w)$.
(b) Find the Fourier integral representation of the function

$$
f(x)= \begin{cases}1, & -1<x<1 \\ 0, & |x|>1\end{cases}
$$

(c) Can you also represent the function $f(x)=k, 0 \neq k$ a constant, as a Fourier integral? Justify your answer!
2. Using the thoerem from last Wednesday's lecture about Fourier integrals and Exercise 1(b), evaluate the following integral:

$$
\int_{0}^{\infty} \frac{\cos w x \sin w}{w} d w
$$

Hint: your answer should depend on x and there are three cases!
3. Use the above method to show that

$$
\int_{0}^{\infty} \frac{1-\cos \pi w}{w} \sin x w d w= \begin{cases}\frac{\pi}{2}, & \text { if } 0<x<\pi \\ \frac{\pi}{4}, & x=\pi \\ 0, & x>\pi\end{cases}
$$

