3E1 Problem Sheet 5

November 10-16, 2003
Lecturer: Claas Röver

1. Sketch the graphs and find the Fourier transforms of the following functions.
(a)

$$
f(x)=\left\{\begin{array}{cl}
e^{-a x}, & \text { if } x>0 \\
0, & \text { if } x<0
\end{array} \quad \text { with } a>0,\right. \text { a constant. }
$$

(b)

$$
f(x)=\left\{\begin{array}{cc}
e^{b x}, & \text { if } x<0 \\
0, & \text { if } x>0
\end{array} \quad \text { with } b>0,\right. \text { a constant. }
$$

(c)

$$
f(x)=\left\{\begin{array}{cc}
c e^{a x}, & \text { if } x<0 \\
c e^{-a x}, & \text { if } x>0
\end{array} \quad \text { where } c \neq 0 \text { and } a>0\right. \text { are constants. }
$$

2. The formulae in parts (a) and (b) below are called Shift Theorems.
(a) Suppose $f(x)$ is function which has a Fourier transform. Argue that $f(x-c), c$ a constant, also has a Fourier transform. Then show that

$$
\mathcal{F}(f(x-c))(w)=e^{-i c w} \mathcal{F}(f(x))(w)
$$

(b) Show that if $\hat{f}(w)$ is the Fourier transform of $f(x)$, then $\hat{f}(w-c)$ is the Fourier transform of $e^{i c x} f(x)$.
3. Recal from the lecture that the Fourier transform of

$$
f(x)=\left\{\begin{array}{cc}
1, & -a<x<a \\
0, & |x|>a
\end{array} \quad \text { is } \quad \hat{f}(w)=\sqrt{\frac{2}{\pi}} \frac{\sin a w}{w} .\right.
$$

Use this and a shift theorem to obtain the Fourier transform of
(a)

$$
g(x)=\left\{\begin{array}{cl}
e^{i c x}, & -a<x<a \\
0, & \text { otherwise }
\end{array}\right.
$$

(b)

$$
h(x)=\left\{\begin{array}{ll}
3, & b<x<c \\
0, & x<b \text { or } x>c
\end{array}, \text { where } b<c\right. \text { are constants. }
$$

