3E1 Problem Sheet 7

November 24-30, 2003
Lecturer: Claas Röver

1. Recall from the lectures that the method of separation of variables, i.e. setting $u(x, t)=F(x) G(t)$, applied to the one-dimensional heat (or diffusion) equation

$$
\begin{equation*}
\frac{\partial u}{\partial t}=c^{2} \frac{\partial^{2} u}{\partial x^{2}} \tag{HE}
\end{equation*}
$$

lead to the following two ordinary differential equations

$$
\frac{\partial^{2} F}{\partial x^{2}}-k F=0 \quad \text { and } \quad \frac{\partial G}{\partial t}-k c^{2} G=0
$$

where k is the so called separation constant.
(a) Let L denote the length of the wire under consideration, so $L>0$. Show that the assumption $k \geq 0$ together with the boundary conditions

$$
\frac{\partial u}{\partial x}(0, t)=0 \quad \text { and } \quad \frac{\partial u}{\partial x}(L, t)=0
$$

imply that $u(x, t)=K=$ const.
(b) Why do you need to consider the cases $k=0$ and $k>0$ separately in part (a)?
(c) Say in words what the boundary conditions $\left(\mathrm{BC}^{\prime}\right)$ mean.
2. From the lecture, the general solution of (HE) satisfying (BC^{\prime}) is $u(x, t)=\sum_{n=0}^{\infty} A_{n}\left(\cos \frac{n \pi x}{L}\right) e^{-\lambda_{n}^{2} t}, \quad$ where $\lambda_{n}=\frac{c n \pi}{L}, n=0,1,2, \ldots$
(Here $c^{2}=\frac{K}{\sigma \rho}$ is a constant depending on the material of the wire.) Find a solution of (HE) satisfying (BC^{\prime}) and the initial condition

$$
\begin{equation*}
u(x, 0)=8 x(L-x) \quad \text { for } \quad 0 \leq x \leq L \tag{IC}
\end{equation*}
$$

3. In Question 2 on Sheet 6 you should have found that

$$
v(x, t)=\frac{64 L^{2}}{\pi^{3}} \sum_{n=1}^{\infty} \frac{1}{(2 n-1)^{3}}\left(\sin \frac{(2 n-1) \pi x}{L}\right) e^{-\lambda_{n}^{2} t}
$$

is the solution of (HE) satisfying (IC) and the boundary conditions

$$
\begin{equation*}
u(0, t)=0 \quad \text { and } \quad u(L, t)=0 \tag{BC}
\end{equation*}
$$

Compare this with your answer to Question 2 above for very large values of t and explain the result.

