3E1 Problem Sheet 8

December 1-7, 2003
Lecturer: Claas Röver

1. Recall that the eigenfunctions of a rectangular membrane of side lengths a and b are

$$
u_{m n}(x, y, t)=\left(a_{m n} \cos \lambda_{m n} t+b_{m n} \sin \lambda_{m n} t\right) \sin \frac{m \pi x}{a} \sin \frac{n \pi y}{b},
$$

for positive integers m and n and with $\lambda_{m n}=c \pi \sqrt{\left(\frac{m}{a}\right)^{2}+\left(\frac{n}{b}\right)^{2}}$ and $c^{2}=\frac{T}{\rho}$.
(a) Assume that $a=b=1$. Find all eigenfunctions with eigenvalue $c \pi \sqrt{85}$.
(b) Assume that $a=1$ and $b=2$. Find two eigenfunctions with the same eigenvalue.
(c) In the case where a and b are arbitrary, state what the frequency of the eigenfunction $u_{m n}$ is and hence find the eigenfunction with the lowest frequency?
2. In order to satisfy the initial condition $u(x, y, 0)=f(x, y)$ we took a superposition of all the eigenfunctions and found that we have to find coefficients $a_{m n}$ such that

$$
\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} a_{m n} \sin \frac{m \pi x}{a} \sin \frac{n \pi y}{b}=f(x, y)
$$

By setting $K_{m}(y)=\sum_{n=1}^{\infty} a_{m n} \sin \frac{n \pi y}{b}$ and not worrying about convergence, derive the generalized Euler formula

$$
a_{m n}=\frac{4}{a b} \int_{0}^{b} \int_{0}^{a} f(x, y) \sin \frac{m \pi x}{a} \sin \frac{n \pi y}{b} d x d y .
$$

3. Find the solution of the two-dimensional wave equation for a rectangular membrane of side lengths a and b with the following initial conditions
(a) $u(x, y, 0)=4 \sin \frac{3 \pi x}{a} \sin \frac{2 \pi y}{b} \quad$ and $\quad \frac{\partial u}{\partial t}(x, y, 0)=0$.
(b) $u(x, y, 0)=x(a-x) \sin \frac{\pi y}{b} \quad$ and $\quad \frac{\partial u}{\partial t}(x, y, 0)=0$.

Hint: In part (a) you don't need a complicated computation! For part (b) recall the orthogonality of the sines.

