3E1 Problem Sheet 9

January 12-18, 2004
Lecturer: Claas Röver

1. The complex conjugate of the complex number $z=x+i y$, which is usually denoted by \bar{z}, is defined by $\bar{z}=x-i y$.
(a) Let $z_{1}=3-2 i$ and $z_{2}=4+i$. In the complex plane, draw the following complex numbers and their complex conjugates: z_{1}, z_{2} and $z_{1}+z_{2}$.
(b) Show that $\operatorname{Re}(z)=\frac{1}{2}(z+\bar{z})$ and $\operatorname{Im}(z)=\frac{-i}{2}(z-\bar{z})$ hold true for every complex number $z=x+i y$.
(c) Recall that the absolute value (also called modulus) of $z=x+i y$, denoted $|z|$, is defined by $|z|=\sqrt{x^{2}+y^{2}}$. Prove the following three identities: $z \bar{z}=|z|^{2}, \overline{z+w}=\bar{z}+\bar{w}$ and $\overline{z w}=\bar{z} \bar{w}$.
2. Let $f(z)=\frac{1}{z}$ and write $z=x+i y$.
(a) Find real functions $u(x, y)$ and $v(x, y)$ such that $f(z)=u(x, y)+$ $i v(x, y)$. (Hint: multiply $f(z)$ by $\frac{\bar{z}}{\bar{z}}$.)
(b) Show that the functions u and v obtained in part (a) satisfy the Cauchy-Riemann equations.
(c) Show that $f(z)$ is differentiable everywhere except at 0 and find its derivative.
3. Decide whether there are any points z_{0} at which $f(z)=\bar{z}$ is differentiable, where \bar{z} denotes the complex conjugate of z. Justify your answer.
