3E1 Problem Sheet 9 January 12-18, 2004 Lecturer: Claas Röver

- 1. The complex conjugate of the complex number z = x + iy, which is usually denoted by \overline{z} , is defined by $\overline{z} = x iy$.
 - (a) Let $z_1 = 3 2i$ and $z_2 = 4 + i$. In the complex plane, draw the following complex numbers and their complex conjugates: z_1 , z_2 and $z_1 + z_2$.
 - (b) Show that $\operatorname{Re}(z) = \frac{1}{2}(z+\overline{z})$ and $\operatorname{Im}(z) = \frac{-i}{2}(z-\overline{z})$ hold true for every complex number z = x + iy.
 - (c) Recall that the *absolute value* (also called *modulus*) of z = x + iy, denoted |z|, is defined by $|z| = \sqrt{x^2 + y^2}$. Prove the following three identities: $z\bar{z} = |z|^2$, $\overline{z + w} = \bar{z} + \overline{w}$ and $\overline{zw} = \bar{z} \overline{w}$.
- 2. Let $f(z) = \frac{1}{z}$ and write z = x + iy.
 - (a) Find real functions u(x, y) and v(x, y) such that f(z) = u(x, y) + iv(x, y). (Hint: multiply f(z) by $\frac{\overline{z}}{\overline{z}}$.)
 - (b) Show that the functions u and v obtained in part (a) satisfy the Cauchy-Riemann equations.
 - (c) Show that f(z) is differentiable everywhere except at 0 and find its derivative.
- 3. Decide whether there are any points z_0 at which $f(z) = \bar{z}$ is differentiable, where \bar{z} denotes the complex conjugate of z. Justify your answer.