1S1 Problem Sheet 1

October 18-31, 2004
Lecturer: Claas Röver
Question 1. Prove the following statement using only the three basic rules of addition and multiplication, i.e. commutativity, associativity and distributivity, where a^{2} is defined by $a^{2}=a a$. Justify each step!

$$
\forall a, b \in \mathbb{R} \quad(a+b)^{2}=a^{2}+2 a b+b^{2}
$$

QUESTION 2. Give a general, not recursive, formula of the form $a_{n}=\ldots$ for each of the following sequences.
(a) $(1,3,5,7,9, \ldots)$
(b) $(2,4,6,8,10, \ldots)$
(c) $(-1,1,-1,1,-1,1, \ldots)$
(d) $\left(-1, \frac{1}{2},-\frac{1}{3}, \frac{1}{4},-\frac{1}{5}, \ldots\right)$

Question 3. For each of the following recursively defined sequences write down the first six terms.
(a) $a_{1}=2, a_{n+1}=3 a_{n}$
(b) $a_{1}=1, a_{2}=2, a_{n+2}=a_{n+1}-a_{n}$
(c) $a_{1}=1, a_{n+1}=\frac{n}{a_{n}}$
(d) $a_{1}=1, a_{n+1}=a_{n}+n+1$

Question 4. Consider the following definitions.
Definition 1. A sequence $\left(a_{1}, a_{2}, a_{3}, a_{4}, \ldots\right)$ is periodic of period p if $p \in \mathbb{N}$ and $a_{n+p}=a_{n}$ holds true for all $n \in \mathbb{N}$.
Definition 2. A sequence is called periodic if it is periodic of period p for some $p \in \mathbb{N}$.
a) Convince yourself that the sequence in Question 2(c) above is periodic and give a value for p such that it is periodic of period p.
b) Show that the sequence in Question $3(b)$ is periodic of period 6 .
c) Prove that a sequence which is periodic of period p is also periodic of period $m p$ for all $m \in \mathbb{N}$.

Question 5. Let a_{n} be the total number of cannon balls in a pyramid shaped pile of cannon balls whose base is an equelateral triangle with n balls along each side (see below). Find and justify a possibly recursive formula for a_{n}.

Question 6. Prove the statement in Question 1 geometrically.
Question 7. Find, state and justify a relationship between the sequences in Questions 5 and $3(d)$.

