1S1 Problem Sheet 2

November 1, 2004, Lecturer: Claas Röver
Solutions to three questions are due Thursday, 11 Nov. before the lecture

Recall that for every real number $a, a^{0}=1$ and $a^{k}=a \cdot a^{k-1}$ for $k \in \mathbb{N}$.
Question 1. Prove the following statements by induction.
(a) For $x \neq 1$ and every $n \in \mathbb{N}$ the following is true

$$
\sum_{k=0}^{n} x^{k}=\frac{1-x^{n+1}}{1-x}
$$

(b) For all $n \in \mathbb{N}$

$$
\sum_{k=1}^{n} k^{2}=\frac{1}{6} n(n+1)(2 n+1) \text { holds }
$$

(c) The inequality $n^{2}<2^{n}$ holds for all $n \geq 5$.

Question 2. For each of the following sequences, determine whether they converge, and if so find their limits.
(a) $a_{n}=\frac{2 n^{2}+5 n-2}{n^{2}-103 n}, n \in \mathbb{N}$
(b) $\quad a_{n}=\frac{n^{3}}{2^{n}}, n \in \mathbb{N}$
(c) $\quad a_{n}=(-1)^{n} \frac{3 n^{2}}{n^{2}-1}, n \in \mathbb{N}$
(d) $\quad a_{n}=\left\{\begin{array}{ll}0, & \text { if } n \text { is odd } \\ \frac{2}{n}, & \text { if } n \text { is even }\end{array} \quad n \in \mathbb{N}\right.$

Question 3. Find the sums of the following serieses.
(a) $\sum_{k=1}^{\infty} 4\left(\frac{1}{10}\right)^{k}$
(b) $\sum_{k=0}^{\infty} \frac{2^{k}}{3^{k-1}}$
(c) $\sum_{k=1}^{\infty} \frac{1}{k(k+1)}$

Question 4. Find the domain and range of the following functions and sketch their graphs.
(a) $\quad f(x)=(x-1)^{2}$
(b) $\quad g(x)=\frac{1}{x}$
(c) $\quad h(x)=x^{3}$

Question 5. A drink can in the shape of a cylindrical box has volume $V=\frac{1}{3} l$.
(a) Find a function S which describes the surface area of the can in dependence on the radius r of the base (or top) of the can.
(b) Determine the domain and range of the function $S(r)$ you found in part (a).
(c) Sketch the graph of the function $S(r)$.

