2S1 Problem Sheet 1

October 22, 2004

Lecturer: Claas Röver

Question 1. For the following functions determine their domains, decide where they are continuous and find their partial derivatives.
(a) $f(x, y)=\frac{x^{2} y}{x-y}$
(b) $f(x, y)=x^{2} \sin y+y \cos x$
(c) $f(x, y)=\ln (x y)$
(d) $f(x, y)=\frac{1}{x} e^{x^{2}+y^{2}}$
(e) $\quad f(x, y)=2|x|-3|y|$
(f) $\quad f(x, y)=\sqrt{x(x-y)}$

Question 2. In your own words, describe what the parial derivatives of a function of two variables describe.

Question 3. Determine the partial derivatives of the following functions
(a) $f(x, y)=\sin (x y-3 x)$
(b) $f(x, y)=\left(x-9 y^{2}\right) e^{-3 x+4 y}$.
(c) $f(x, y)=(\ln x) \cos \left(2 x^{3}\right)$
(d) $f(x, y)=\frac{2 e^{-x^{2}}}{x+y}$

Question 4. Sketch the level curves of the following functions for four different values of your choice.
(a) $f(x, y)=x^{2}+y^{2}$
(b) $f(x, y)=3 x-y$
(c) $f(x, y)=x^{3}+2 y$
(d) $\quad f(x, y)=x e^{y}$

Question 5. Define $f(x, y)=\frac{x-y}{x^{2}-y^{2}}$.
(a) Find the limit of $f(x, y)$ at $(0,0)$ along the follwing curves.
(i) The positive x-axis; i.e. $x(t)=t, y(t)=0, t>0$.
(ii) The negative x-axis.
(iii) Any ray emanating from the origin into the right half plane with slope other than ± 1; i.e. $x(t)=t, y(t)=a t t>0, a \neq \pm 1$.
(b) Describe the level curves of $f(x, y)$.
(c) Sketch the graph of $f(x, y)$.

