2S1 Problem Sheet 2

November 1, 2004
Lecturer: Claas Röver
Question 1. Define the gradient of a function $f(x, y)$ of two variables. In your own words, say what the gradient tells about the function f and how it relates to the level curves of f.
Question 2. Determine the gradient of the following functions.
(a) $f(x, y)=x^{3} y-2 x^{2} y^{2}+5 x y^{4}$
(b) $f(x, y)=\frac{3 x y-x^{2}}{\sin x}$
(c) $f(x, y)=\sin \left(2 x y^{2}\right)+\cos (x-3 y)$
(d) $f(x, y)=\frac{\sin ^{x}}{x^{2}+y^{2}}, C=$ const.

Question 3. Let $f(x, y)=1+\sin (x y-3 y)$ and put $\left(x_{0}, y_{0}\right)=\left(\frac{10}{3}, \frac{\pi}{2}\right)$. The function f defines a fairly hilly surface in \mathbb{R}^{3}, as plotting it with Mathematica confirms.
(a) Find a formula for the level curve C of f through the point $\left(x_{0}, y_{0}\right)$ and draw a sketch of it. What is the value f has at every point on C ?
(b) Suppose you stand on the surface of f at the point $\left(x_{0}, y_{0}, f\left(x_{0}, y_{0}\right)\right)$. Find a unit vector in the direction you would choose if you wanted to go downhill as quickly as possible.
(c) Find the directional derivative of f in the direction of the vector $(\cos t, \sin t)$. (Hint: you should get a function of the three variables x, y and t.)

Question 4. (a) Find the directional derivative of $f(x, y)=\frac{5}{x^{2}+y^{2}}$ at the point P towards the origin when

$$
\text { (i) } \quad P=(2,1) \quad \text { (ii) } \quad P=(-1,2) \quad \text { (iii) } \quad P=(\sqrt{5}, 0) \text {. }
$$

(b) Find the directional derivative of $f(x, y)=A x^{2}+B x y+C y^{2}$ at (a, b) in the direction from (a, b) towards (b, a), where A, B and C are constants.
(c) Give a reason why you always got the same answer in part (a) above.

Question 5. Let $f(x, y)$ be a function of the independent variables x and y with continuous second-order partial derivatives. Show that, if $x=e^{\frac{1}{2}(u-v)}$ and $y=$ $e^{\frac{1}{2}(u+v)}$, then

$$
\frac{\partial^{2} f}{\partial u^{2}}-\frac{\partial^{2} f}{\partial v^{2}}=\operatorname{axy} \frac{\partial^{2} f}{\partial x \partial y}
$$

and determine the constant a.
Question 6. Find the extreme points, that is relative maxima and minima and saddle points, of the following functions of two variables.
(a) $f(x, y)=2 x^{2}+y^{2}-x y+7 y$
(b) $f(x, y)=-x y e^{-\frac{1}{2}\left(x^{2}+y^{2}\right)}$
(c) $f(x, y)=y^{2}-x y+2 x+y+1$
(d) $f(x, y)=x \sin y$

