2S1 Problem Sheet 3

November 12, 2004
Lecturer: Claas Röver
Question 1. Find the maxima and minima of the function $f(x, y)=x^{2}+y^{2}$ under the constraint $3 x^{2}+4 x y+12 y^{2}=64$.
Question 2. State the first and second partial derivative test for the local maxima, local minima and saddle points of a function $f(x, y)$ of two independent variables x and y and define a critical point.
Find the local minima and maxima and saddle points of the function

$$
f(x, y)=\cos x \sin y
$$

Question 3. A zeppelin ${ }^{1}$ in the shape of an ellipsoid

$$
6 x^{2}+2 y^{2}+z^{2}=21
$$

is flying over a bush fire. The temperature on its surface is found to be

$$
T(x, y, z)=60-x^{2} y^{2} z^{3}
$$

Find the hottest points on the zeppelin's surface using the method of Lagrange multipliers.
Question 4. Let f be a function of the two independent variables x and y with continuous second partial derivatives. Show that if $x=u+v$ and $y=u-v$, then

$$
\frac{\partial^{2} f}{\partial u^{2}}+\frac{\partial^{2} f}{\partial u \partial v}+\frac{\partial^{2} f}{\partial v^{2}}=a \frac{\partial^{2} f}{\partial x^{2}}+b \frac{\partial^{2} f}{\partial y^{2}}
$$

for some constants a and b and determine a and b.
Question 5. Let $f(x, y)=e^{x^{2}-y}$.
(a) Find the directional derivative of f at the point P in the direction of the vector u in the following cases.
(i) $P=(1,0), \quad u=(1,2)$
(ii) $\quad P=(2,3), \quad u=(1,4)$
(iii) $\quad P=(3,8), \quad u=(1,6)$
(iv) $P=(-1,0), \quad u=(1,-2)$
(b) Find a reason why you always obtained the same answer in part (a).
(c) Give a parametric description, i.e. $x(t)=\ldots$ and $y(t)=\ldots$, of the level curve of f on which $f(x, y)=e$.
(d) Try to use part (c) in order to answer part (b).

Question 6. Let S be the unit sphere in \mathbb{R}^{3}, that is

$$
S=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x^{2}+y^{2}+z^{2}=1\right\}
$$

Let B be a rectangular shaped box that fits inside S. What is the largest possible volume B can have? What is the shape of B that attains this maximal volume?

[^0]
[^0]: ${ }^{1} \mathrm{~A}$ zeppelin is a huge, helium filled, cigarillo shaped aircraft. They were popular until one exploded.

