2S1 Problem Sheet 4

December 8, 2004
Lecturer: Claas Röver
Question 1. Describe the constant u - and v-curves of the parametric surface defined by $r(u, v)=(\sin v, u, u+\cos v)$. Then compute the area of the surface when the parameter v is restricted by $0 \leq v \leq \frac{\pi}{8}$ and for each such $v, 0 \leq u \leq \sin (2 v)$.

Question 2. Let R be the region bounded by the x-axis, the lines $x=1$ and $x=4$ and the graph of the function $g(x)=\sqrt{x}$. Determine the mass and centre of gravity of a flat object that occupies R and has density $\rho(x, y)=x y$.

Question 3. Let n be a positive integer. Let \mathcal{O}_{n} be a flat object occupying the region in the first quadrant of the $x y$-plane which is enclosed by the graphs of the functions $f(x)=x^{n}$ and $g(x)=\sqrt{x}$. Suppose the density of the object \mathcal{O}_{n} is given by $\rho(x, y)=9 \frac{\sqrt{y}}{x}$. Let m_{n} denote the mass of the object \mathcal{O}_{n} and determine $\lim _{n \rightarrow \infty} m_{n}$.
Question 4. Evaluate the following double integrals.

$$
\int_{0}^{2} \int_{x^{2}}^{4} x e^{y^{2}} d y d x \quad \text { and } \quad \int_{0}^{1} \int_{0}^{\arccos y} \sqrt{1+\sin x} d x d y
$$

Question 5. (a) Describe the surface \mathcal{C} in 3-dimensional space which is determined by the equation $2 x^{2}+y^{2}=1$.
(b) Let \mathcal{S} be the surface of the function $f(x, y)=\sqrt{1-2 x^{2}}$ and find the volume of the solid which is bounded by the $x y$-plane and the surfaces \mathcal{C} and \mathcal{S}.
(c) Compute the surface area of that part of \mathcal{S} which is on the inside of the elliptical cylinder \mathcal{C}. Hint: You need to look up an integral in the log tables.
Question 6. Sketch the curve $r=\sin (3 \theta)$, where r and θ are polar coordinates, and determine the area enclosed by that curve.
Question 7. A sheet of paper is 0.05722 mm thick. Suppose you have a very large large sheet of paper, so that you can fold it repeatedly to half its previous size. How many times do you have to fold your paper to obtain a block that matches the height of the Dublin Spire which, I believe is 120 m high? If your initial piece of paper is $1 \mathrm{~km}^{2}$, what is the base size of the paper block that matches the Spire? This figure may help to recover the construction of a pentagon.

