QUESTION 1. (a) Let R be the rectangle in the uv-plane which is bounded by the lines u = 1, u = 2, v = 0 and $v = \frac{\pi}{2}$. Find the image of R in the xy-plane under the transformation $T(u, v) = (u \cos v, u \sin v)$ and compute the Jacobian of T.

(b) Use an appropriate change of variables to evaluate $\iint_R (x-y)e^{x^2-y^2}dA$, where R is the region bounded by the lines x + y = 0, x + y = 1, x - y = 1 and x - y = 4.

QUESTION 2. Let S be surface given by $x(u, v) = \sqrt{4 - v} \cos u$, $y(u, v) = \sqrt{4 - v} \sin u$ and z(u, v) = v with $0 \le u \le 2\pi$ and $0 \le v \le 4$.

- (a) Describe the constant u- and v-curves of S.
- (b) Compute the surface area of S.
- (c) Find a function f(x, y) and a region R in the xy-plane so that the graph/surface of f over the region R coincides with S. Justify your answer.
- (d) Determine the volume that is enclosed by S and the xy-plane.
- QUESTION 3. (a) Let $C(t) = (2t, t^2 1), 1 \le t \le 2$. Sketch the path C indicating its direction and find its length.
 - (b) Evaluate the line integrals $\int_{C} 2(x-y)(1+\cos x) ds$ and $\int_{C} y dx + (y-x) dy$, where C is the path from (0,0) to $(2\pi, 2\pi)$ with x(t) = t and $y(t) = t + \sin t$.

QUESTION 4. Let \mathbf{F} and \mathbf{G} be 3-dimensional vector fields.

- (a) Show that $\operatorname{div}(\mathbf{F} \times \mathbf{G}) = \mathbf{G} \cdot \operatorname{curl} \mathbf{F} \mathbf{F} \cdot \operatorname{curl} \mathbf{G}$
- (b) Give a geometric argument for the fact that $\mathbf{a} \cdot (\mathbf{a} \times \mathbf{b}) = 0$ for any 3 dimensional vectors \mathbf{a} and \mathbf{b} .
- (c) Show that, if the component functions of the vector field \mathbf{F} have continuous second partial derivatives, then div(curl \mathbf{F}) = 0. *Remark.* The latter equation can also be written as $\nabla \cdot (\nabla \times \mathbf{F})$ which is similar to the result in part (b).
- QUESTION 5. (a) Show that the vector field $\mathbf{F}(x, y, z) = (6xy \sin z, 3x^2, -x \cos z)$ is conservative, by finding a potential function. Then find the work done by \mathbf{F} on a particle moving from the origin to the point $(1, 1, \pi)$.
 - (b) Let $\mathbf{F} = (x y, z x, \frac{8}{3}y)$. Compute the work done by \mathbf{F} on a particle moving from the origin to the point (1, 1, 1) first a long a straight line and then along the path $C(t) = (t, t^2, t^3), 0 \le t \le 1$. Decide whether \mathbf{F} is conservative.