2S1 Problem Sheet 5

January 31, 2005
Lecturer: Claas Röver
Question 1. (a) Let R be the rectangle in the $u v$-plane which is bounded by the lines $u=1, u=2, v=0$ and $v=\frac{\pi}{2}$. Find the image of R in the $x y$ plane under the transformation $T(u, v)=(u \cos v, u \sin v)$ and compute the Jacobian of T.
(b) Use an appropiate change of variables to evaluate $\iint_{R}(x-y) e^{x^{2}-y^{2}} d A$, where R is the region bounded by the lines $x+y=0, x+y=1, x-y=1$ and $x-y=4$.
Question 2. Let S be surface given by $x(u, v)=\sqrt{4-v} \cos u, y(u, v)=\sqrt{4-v} \sin u$ and $z(u, v)=v$ with $0 \leq u \leq 2 \pi$ and $0 \leq v \leq 4$.
(a) Describe the constant u - and v-curves of S.
(b) Compute the surface area of S.
(c) Find a function $f(x, y)$ and a region R in the $x y$-plane so that the graph/surface of f over the region R coincides with S. Justify your answer.
(d) Determine the volume that is enclosed by S and the $x y$-plane.

Question 3. (a) Let $C(t)=\left(2 t, t^{2}-1\right), 1 \leq t \leq 2$. Sketch the path C indicating its direction and find its length.
(b) Evaluate the line integrals $\int_{C} 2(x-y)(1+\cos x) \mathrm{d} s$ and $\int_{C} y \mathrm{~d} x+(y-x) \mathrm{d} y$, where C is the path from $(0,0)$ to $(2 \pi, 2 \pi)$ with $x(t)=t$ and $y(t)=t+\sin t$.
Question 4. Let \mathbf{F} and \mathbf{G} be 3-dimensional vector fields.
(a) Show that $\operatorname{div}(\mathbf{F} \times \mathbf{G})=\mathbf{G} \cdot \operatorname{curl} \mathbf{F}-\mathbf{F} \cdot \operatorname{curl} \mathbf{G}$
(b) Give a geometric argument for the fact that $\mathbf{a} \cdot(\mathbf{a} \times \mathbf{b})=0$ for any 3 dimensional vectors \mathbf{a} and \mathbf{b}.
(c) Show that, if the component functions of the vector field \mathbf{F} have continuous second partial derivatives, then $\operatorname{div}(\operatorname{curl} \mathbf{F})=0$.
Remark. The latter equation can also be written as $\nabla \cdot(\nabla \times \mathbf{F})$ which is similar to the result in part (b).

Question 5. (a) Show that the vector field $\mathbf{F}(x, y, z)=\left(6 x y-\sin z, 3 x^{2},-x \cos z\right)$ is conservative, by finding a potential function. Then find the work done by \mathbf{F} on a particle moving from the origin to the point $(1,1, \pi)$.
(b) Let $\mathbf{F}=\left(x-y, z-x, \frac{8}{3} y\right)$. Compute the work done by \mathbf{F} on a particle moving from the origin to the point $(1,1,1)$ first a long a straight line and then along the path $C(t)=\left(t, t^{2}, t^{3}\right), 0 \leq t \leq 1$. Decide whether \mathbf{F} is conservative.

