CS3304 Logic – Problem Sheet 5

October 14, 2016, Lecturer: Claas Röver

QUESTION 1. State the three axioms, or rather axiom schema, of axiomatic propositional logic (APL for short). Then decide which of the following **wff** are instances of these axioms.

(a)
$$((\neg p_1) \to ((p_1 \to p_2) \to (\neg p_1)))$$

(b) $(((((\neg q) \to (\neg (\neg p))) \to (\neg ((p \to q) \to r))) \to (A \to (q \to (\neg p))))$
(c) $((((p \to q) \to r) \to ((\neg (\neg p)) \to (\neg q))) \to ((((p \to q) \to r) \to (\neg (\neg p))) \to (((p \to q) \to r) \to (\neg q))))$
(d) $(((\neg (\neg p_2)) \to (\neg ((q_2 \to p_1) \to q_1))) \to (((q_2 \to p_1) \to q_1) \to (\neg p_2)))$
(e) $(((\neg (p_0 \to p_1)) \to (\neg (p_2 \to (p_0 \to p_1)))) \to ((p_2 \to (p_0 \to p_1)) \to (p_0 \to p_1)))$

(f)
$$((\neg (p_0 \to p_1) \to (p_2 \to (p_0 \to p_1))) \to ((\neg (p_2 \to (p_0 \to p_1))) \to (p_0 \to p_1)))$$

QUESTION 2. Find a deduction in APL of the following useful theorem, which is known as *transitivity of implication* (TI for short). *Hint:* Use the Deduction Theorem (DT for short).

$$\{(A \to B), \, (B \to C)\} \vdash (A \to C)$$

QUESTION 3. Here is a deduction of $\vdash \neg \neg A \rightarrow A$ using TI.

- (a) Modify the above deduction sequence from below line 5, replacing the use of Axiom 2 by an invocation of the Deduction Theorem.
- (b) Find a deduction of $\vdash \neg \neg A \rightarrow A$ using an instance of the theorem $\vdash \neg A \rightarrow (A \rightarrow B)$, which was proved in the lectures, and at most one (instance of an) axiom.
- QUESTION 4. Find deductions of the following in APL. You may use TI, DT and previous results of this question.

(a)
$$\{B, A \to (B \to C)\} \vdash A \to C$$

(b) $\vdash (A \to (B \to C)) \to (B \to (A \to C))$
(c) $\vdash (A \to B) \to (\neg B \to \neg A)$
(d) $\vdash A \to \neg \neg A$
(e) $\vdash \neg (A \to B) \to \neg B$