CS3304 Logic – Problem Sheet 7

November 4, 2016, Lecturer: Claas Röver

QUESTION 1. (a) Convert the following formulæ into conjunctive normal form.

(i)
$$\neg (p \rightarrow (q \lor r))$$
 (ii) $(\neg p) \lor (q \leftrightarrow \neg r)$ (iii) $(p \rightarrow q) \rightarrow ((\neg p \land r) \lor \neg q)$
(iv) $p \lor (r \rightarrow \neg s)$ (v) $(s \land q) \lor \neg (s \land r)$ (vi) $(q \lor \neg p) \rightarrow (s \rightarrow (\neg q \land p))$

(b) Use resolution to decide whether the two sets of formulæ (i)-(iii) and (iv)-(vi) from part (a) are satisfyable. What about the set of formulæ (i)-(vi)?

QUESTION 2. Prove the following theorems using resolution.

(a)
$$\vdash (p \rightarrow (q \rightarrow r)) \rightarrow ((p \rightarrow q) \rightarrow (p \rightarrow r))$$

(b) $\vdash ((p \rightarrow (q \rightarrow r)) \land p) \rightarrow \neg (q \land \neg r)$

QUESTION 3. Prove the **Unit Clause Rule**: Let S be a set of clauses. Suppose S contains a unit clause $\{\lambda\}$, for some literal λ , and define

$$S' = \{ C \setminus \{ \neg \lambda \} \mid C \in S, \lambda \notin C \};$$

that is, S' is obtained from S by deleting all clauses containing λ and removing $\neg \lambda$ from the remaining clauses. Then S is satisfyable if and only if S' is satisfyable.

QUESTION 4. Prove the **Pure Literal Rule**: Let S be a set of clauses. Suppose that a literal λ is contained in some clause in S but $\neg \lambda$ is not contained in any clause in S, and define

$$S' = \{ C \mid C \in S, \, \lambda \notin C \};$$

that is S' obtained from S by deleting all clauses containing λ . Then S is satisfyable if and only if S' is satisfyable.

- QUESTION 5. Use resolution to decide whether the following is a valid argument. If $A \to B$, $\neg A \lor C \lor D$, $\neg C \lor (D \land A)$ and $(C \land \neg D) \to \neg E$ hold, then $\neg D \to B$ also holds.
- QUESTION 6. Use resolution to prove that a triangle is a 3-colourable but not 2-colourable graph.
- QUESTION 7. Assume that R is a unary and P a binary relation, c is a constant and f is a binary function. As usual, x and y are variables. Decide which of the following are well formed fromulæ of predicate logic,

(a)
$$(P(x,y) \land \neg R(x))$$
 (b) $\exists x R(x) f(x,y)$ (c) $\forall y (R(c,y) \to Px)$
(d) $\forall x \exists x P(f(x,c),x)$ (e) $\exists x (P(x) \to \forall y R(y))$ (f) $\forall x f(R(y),x)$