Axiomatic Propositional Logic

Axiomatic propositional logic is a formal system consisting of the following three ingredients.
Well formed formualæ (wff for short) over the alphabet $\Sigma=\{(),, \neg, \rightarrow\} \cup V$, for some arbitrary but fixed countable set V of variables, are defined inductively:

- Every variable $p \in V$ is a wff.
- If A and B are wff, then so are $(\neg A)$ and $(A \rightarrow B)$.
- Nothing else is a wff.

Three axiom schemes for any wff A, B and C :

$$
\begin{array}{ll}
\text { Ax1: } & (A \rightarrow(B \rightarrow A)) \\
\mathrm{Ax2:} & ((A \rightarrow(B \rightarrow C)) \rightarrow((A \rightarrow B) \rightarrow(A \rightarrow C))) \\
\mathrm{A} \times 3: & (((\neg B) \rightarrow(\neg A)) \rightarrow(A \rightarrow B))
\end{array}
$$

Deductions are sequences of wff in which every term is either an (instance of an) axiom, a hypothesis or obtained from previous terms in the sequence using Modus Ponens (MP), namely if A and $(A \rightarrow B)$ are in the sequence, then we may append B to it, for any wff A and B. That C can be deduced from the hypotheses $A_{1}, A_{2}, \ldots A_{n}$ is denoted by $\left\{A_{1}, A_{2}, \ldots A_{n}\right\} \vdash C$.

Example dedcutions; \mathcal{H} means hypohtesis			17.	$\{B \rightarrow A\} \vdash \neg \neg B \rightarrow \neg \neg A$	TI 13.- $\mathcal{H}-16$.
1.	$A \rightarrow((B \rightarrow A) \rightarrow A)$	Ax1	18.	$(\neg \neg B \rightarrow \neg \neg A) \rightarrow(\neg A \rightarrow \neg B)$	Ax 3
2.	$(A \rightarrow((B \rightarrow A) \rightarrow A)) \rightarrow$		19.	$\{B \rightarrow A\} \vdash \neg A \rightarrow \neg B$	MP 17.\&18.
	$((A \rightarrow(B \rightarrow A)) \rightarrow(A \rightarrow A))$	A $\times 2$	20.	$(B \rightarrow A) \rightarrow(\neg A \rightarrow \neg B)$	DT 19.
3.	$(A \rightarrow(B \rightarrow A)) \rightarrow(A \rightarrow A)$	MP 1.\&2.	21.	$\{B, B \rightarrow C\} \vdash C$	MP on \mathcal{H}
4.	$A \rightarrow(B \rightarrow A)$	A×1	22.	$B \rightarrow((B \rightarrow C) \rightarrow C)$	$2 \times$ DT 21.
5.	$A \rightarrow A \quad$ Note: now DT and TI hold	MP 4.\&3.	23.	$((B \rightarrow C) \rightarrow C) \rightarrow(\neg C \rightarrow \neg(B \rightarrow C))$	Thm 20.
6.	$\neg B \rightarrow(\neg C \rightarrow \neg B)$	A×1	24.	$B \rightarrow(\neg C \rightarrow \neg(B \rightarrow C))$	TI 22.-23.
7.	$(\neg C \rightarrow \neg B) \rightarrow(B \rightarrow C)$	Ax 3	25.	$\neg A \rightarrow(A \rightarrow \neg X)$	Thm 8.
8.	$\neg B \rightarrow(B \rightarrow C)$	TI 6.-7.	26.	$(\neg A \rightarrow(A \rightarrow \neg X)) \rightarrow((\neg A \rightarrow A) \rightarrow(\neg A \rightarrow \neg X))$	A×2
9.	$\neg \neg B \rightarrow(\neg B \rightarrow \neg \neg \neg B)$	Thm 8.	27.	$(\neg A \rightarrow A) \rightarrow(\neg A \rightarrow \neg X)$	MP 25.\&26.
10.	$(\neg B \rightarrow \neg \neg \neg B) \rightarrow(\neg \neg B \rightarrow B)$	A $\times 3$	28.	$(\neg A \rightarrow \neg X) \rightarrow(X \rightarrow A)$	A×3
11.	$\neg \neg B \rightarrow(\neg \neg B \rightarrow B)$	TI 9.-10.	29.	$(\neg A \rightarrow A) \rightarrow(X \rightarrow A)$	TI 27.-28.
12.	$\{\neg \neg B\} \vdash B$	$2 \times \mathrm{MP} \mathcal{H} \& 11$.	30.	$\{\neg A \rightarrow A\} \vdash A \quad$ put $X=\neg A \rightarrow A$ and use	$2 \times$ MP H\&29.
13.	$\neg \neg B \rightarrow B$	DT 12.	31.	$(\neg A \rightarrow A) \rightarrow A$	DT 30.
14.	$\neg \neg \neg A \rightarrow \neg A$	Thm 13.	32.	$\{B \rightarrow A, \neg B \rightarrow A\} \vdash \neg A \rightarrow A$	TI 19.-H
15.	$(\neg \neg \neg A \rightarrow \neg A) \rightarrow(A \rightarrow \neg \neg A)$	A×3	33.	$\{B \rightarrow A, \neg B \rightarrow A\} \vdash A$	MP 31.\&32.
16.	$A \rightarrow \neg \neg A$	MP 14.\&15	34.	$(B \rightarrow A) \rightarrow((\neg B \rightarrow A) \rightarrow A)$	$2 \times$ DT 33.

Deduction Theorem (DT). If $\Delta \subseteq \mathcal{W}$ and $A \in \mathcal{W}$, then $\Delta \cup\{A\} \vdash B$ if and only if $\Delta \vdash A \rightarrow B$. Sketch proof. "If" follows by adding A as a hypothesis and MP. "Only if" is shown by induction on the length of a deduction sequence for B. If B is a hypothesis or an axiom, then use either $\vdash A \rightarrow A$ [5.] (when $B=A$) or $\vdash(B \rightarrow(A \rightarrow B))[\mathrm{A} \times 1]$ and MP. Otherwise B is obtained from C and $C \rightarrow B$ by MP and the induction hypothesis gives $\Delta \vdash A \rightarrow C$ and $\Delta \vdash A \rightarrow(C \rightarrow B)$. Use A×2 and twice MP to get $\Delta \vdash A \rightarrow B$.

Transitivity of Implication (TI). $\{A \rightarrow B, B \rightarrow C\} \vdash A \rightarrow C$ (Follows easily using DT.)
A (truth) valuation is a function $v: \mathcal{W} \rightarrow\{\mathrm{T}, \mathrm{F}\}$, where \mathcal{W} denotes the set of wff, satisfying $v(A) \neq v(\neg A)$ and $v(A \rightarrow B)=\mathrm{F}$ if and only if $v(B)=\mathrm{F}$ and $v(A)=\mathrm{T}$. A wff A is a tautology ($\models A$ in symbols), if $v(A)=\mathrm{T}$ for every valuation v.

Theorem. Axiomatic Propositional Logic is sound ($\vdash A$ implies $\models A$), consistent (not both $\vdash A$ and $\vdash \neg A$) and complete ($\models A$ implies $\vdash A$).
Sketch of proof. Soundness is by induction on the length of a deduction sequence for A.

$$
\begin{array}{ll}
\text { Induction Base: } & v(\mathrm{~A} \times 1)=\mathrm{F} \Longrightarrow v(A)=\mathrm{T} \& v(B \rightarrow A)=\mathrm{F} \Longrightarrow v(A)=\mathrm{T} \& v(A)=\mathrm{F}, \text { contradiction } \\
& v(\mathrm{~A} \times 2)=\mathrm{F} \Longrightarrow v(A \rightarrow(B \rightarrow C))=v(A \rightarrow B)=v(A)=\mathrm{T} \& v(C)=\mathrm{F} \Longrightarrow v(B)=v(B \rightarrow C)=\mathrm{T} \Longrightarrow v(C)=\mathrm{T}, \text { contradiction } \\
& v(\mathrm{~A} \times 3)=\mathrm{F} \Longrightarrow v(A \rightarrow B)=\mathrm{F} \& v(\neg B \rightarrow \neg A)=\mathrm{T} \Longrightarrow v(A)=\mathrm{T} \& v(B)=\mathrm{F} \& v(\neg B)=\mathrm{F}, \text { contradiction } \\
\text { Induction Step: } & v(A)=\mathrm{T} \& v(A \rightarrow B)=\mathrm{T} \Longrightarrow v(B)=\mathrm{T} \text {, so if } A \text { and }(A \rightarrow B) \text { are tautologies, then so is } B
\end{array}
$$

Consistency now follows, since $\vdash A$ and $\vdash \neg A$ implies $v(A)=v(\neg A)=\mathrm{T}$ for every valuation v, contradicting the definition of a valuation. Completeness is a consequence of Lemmas 1 and 2 below, which allow elimination of all q_{i} if A is a tautology, by choosing valuations u, v with $u\left(q_{i}\right)=\mathrm{T}$ and $v\left(q_{i}\right)=\mathrm{F}$.
Lemma 1. Let v be valuation and A a wff with set of variables $p_{1}, p_{2} \ldots, p_{n}$. Then

$$
\left\{q_{1}, q_{2}, \ldots, q_{n}\right\} \vdash \bar{A}, \text { where } q_{i}=\left\{\begin{array}{cl}
p_{i}, & \text { if } v\left(p_{i}\right)=\mathrm{T} \\
\neg p_{i}, & \text { if } v\left(p_{i}\right)=\mathrm{F}
\end{array} \quad \text { and } \quad \bar{A}=\left\{\begin{array}{cl}
A, & \text { if } v(A)=\mathrm{T} \\
\neg A, & \text { if } v(A)=\mathrm{F}
\end{array} .\right.\right.
$$

Proof. Induction on the number of logical operators \neg and \rightarrow in $A ; \mathcal{I H}$ means induction hypothesis.

$$
\begin{aligned}
& \text { Induction base: } \quad A=p_{1} \quad v(A)=v\left(p_{1}\right)=\mathrm{T} \text {, then } \bar{A}=A \text { and } q_{1}=p_{1} \text {, but clearly }\left\{p_{1}\right\} \vdash p_{1} \\
& v(A)=v\left(p_{1}\right)=\mathrm{F} \text {, then } \bar{A}=\neg A \text { and } q_{1}=\neg p_{1} \text {, but clearly }\left\{\neg p_{1}\right\} \vdash \neg p_{1} \\
& v(A)=\mathrm{T} \text {, then } \bar{A}=A, \bar{B}=\neg B \text { and }\left\{q_{1}, \ldots, q_{n}\right\} \vdash \bar{B} \text { by } \mathcal{I H} \text {, but } \bar{A}=\bar{B} \\
& v(A)=\mathrm{F} \text {, then } \bar{A}=\neg A, \bar{B}=B \text { so } \mathcal{I H} \text { gives }\left\{q_{1}, \ldots, q_{n}\right\} \vdash B \text {, but } \vdash B \rightarrow \neg \neg B[16 \text {.] } \\
& v(A)=\mathrm{T} \& v(B)=\mathrm{F} \text {, then } \bar{A}=A, \bar{B}=\neg B \text { so } \mathcal{I H} \text { gives }\left\{q_{1}, \ldots, q_{n}\right\} \vdash \bar{B} \text {, but } \vdash \neg B \rightarrow(B \rightarrow C)[8 .] \\
& v(A)=\mathrm{T}=v(B) \text {, then } v(C)=\mathrm{T}, \bar{A}=A, \bar{C}=C \text { so }\left\{q_{1}, \ldots, q_{n}\right\} \vdash C \text { by } \mathcal{I H} \text {, but } \vdash C \rightarrow(B \rightarrow C)[\mathrm{A} \times 1] \\
& v(A)=\mathrm{F} \text {, then } \bar{A}=\neg A, \bar{C}=\neg C, \bar{B}=B \text {, so }\left\{q_{1}, \ldots, q_{n}\right\} \vdash \neg C, B \text { by } \mathcal{I H} \text {, but } \vdash B \rightarrow(\neg C \rightarrow \neg(B \rightarrow C)) \text { [24.] }
\end{aligned}
$$

Lemma 2. If $\left\{q_{1}, q_{2}, \ldots, q_{n}\right\} \vdash A$ and $\left\{\neg q_{1}, q_{2}, \ldots, q_{n}\right\} \vdash A$, then $\left\{q_{2}, \ldots, q_{n}\right\} \vdash A$.
Proof. This follows from DT and $\vdash(B \rightarrow A) \rightarrow((\neg B \rightarrow A) \rightarrow A)$ [34.], with $B=q_{1}$.

