Axiomatic Propositional Logic

Axiomatic propositional logic is a formal system consisting of the following three ingredients.

Well formed formualæ (wff for short) over the alphabet $\Sigma = \{(,), \neg, \rightarrow\} \cup V$, for some arbitrary but fixed countable set V of variables, are defined inductively:

- Every variable $p \in V$ is a **wff**.
- If A and B are wff, then so are $(\neg A)$ and $(A \rightarrow B)$.
- Nothing else is a **wff**.

Three axiom schemes for any **wff** *A*, *B* and *C*:

- Ax1: $(A \to (B \to A))$ Ax2: $((A \to (B \to C)) \to ((A \to B) \to (A \to C)))$
- Ax3: $(((\neg B) \rightarrow (\neg A)) \rightarrow (A \rightarrow B))$
- **Deductions** are sequences of **wff** in which every term is either an (instance of an) axiom, a hypothesis or obtained from previous terms in the sequence using *Modus Ponens* (MP), namely if A and $(A \rightarrow B)$ are in the sequence, then we may append B to it, for any **wff** A and B. That C can be deduced from the hypotheses $A_1, A_2, \ldots A_n$ is denoted by $\{A_1, A_2, \ldots A_n\} \vdash C$.

	Example dedcutions; ${\mathcal H}$ means hypohtesis		17.	$\{B \to A\} \vdash \neg \neg B \to \neg \neg A$	TI 13H-16.
1.	$A \to ((B \to A) \to A)$	Ax1	18.	$(\neg \neg B \rightarrow \neg \neg A) \rightarrow (\neg A \rightarrow \neg B)$	Ax3
2.	$(A \rightarrow ((B \rightarrow A) \rightarrow A)) \rightarrow A)) \rightarrow A$		19.	$\{B \to A\} \vdash \neg A \to \neg B$	MP 17.&18.
	$((A \to (B \to A)) \to (A \to A))$	Ax2	20.	$(B \to A) \to (\neg A \to \neg B)$	DT 19.
3.	$(A \to (B \to A)) \to (A \to A)$	MP 1.&2.	21.	$\{B, B \to C\} \vdash C$	MP on ${\cal H}$
4.	$A \to (B \to A)$	Ax1	22.	$B \to ((B \to C) \to C)$	2×DT 21.
5.	$A \rightarrow A$ Note: now DT and TI hold	MP 4.&3.	23.	$((B \to C) \to C) \to (\neg C \to \neg (B \to C))$	Thm 20.
6.	$\neg B \rightarrow (\neg C \rightarrow \neg B)$	Ax1	24.	$B \to (\neg C \to \neg (B \to C))$	TI 2223.
7.	$(\neg C \rightarrow \neg B) \rightarrow (B \rightarrow C)$	Ax3	25.	$\neg A \rightarrow (A \rightarrow \neg X)$	Thm 8.
8.	$\neg B \rightarrow (B \rightarrow C)$	TI 67.	26.	$(\neg A \to (A \to \neg X)) \to ((\neg A \to A) \to (\neg A \to \neg X))$	Ax2
9.	$\neg \neg B \rightarrow (\neg B \rightarrow \neg \neg \neg B)$	Thm 8.	27.	$(\neg A \to A) \to (\neg A \to \neg X)$	MP 25.&26.
10.	$(\neg B \rightarrow \neg \neg \neg B) \rightarrow (\neg \neg B \rightarrow B)$	Ax3	28.	$(\neg A \to \neg X) \to (X \to A)$	Ax3
11.	$\neg \neg B \rightarrow (\neg \neg B \rightarrow B)$	TI 910.	29.	$(\neg A \to A) \to (X \to A)$	TI 2728.
12.	$\{\neg \neg B\} \vdash B$	2×MP <i>H</i> &11.	30.	$\{\neg A \to A\} \vdash A$ put $X = \neg A \to A$ and use	2×MP H&29.
13.	$\neg \neg B \rightarrow B$	DT 12.	31.	$(\neg A \to A) \to A$	DT 30.
14.	$\neg \neg \neg A \rightarrow \neg A$	Thm 13.	32.	$\{B \to A, \neg B \to A\} \vdash \neg A \to A$	TI 19H
15.	$(\neg \neg \neg A \rightarrow \neg A) \rightarrow (A \rightarrow \neg \neg A)$	Ax3	33.	$\{B \to A, \neg B \to A\} \vdash A$	MP 31.&32.
16.	$A \rightarrow \neg \neg A$	MP 14.&15	34.	$(B \to A) \to ((\neg B \to A) \to A)$	2×DT 33.

Deduction Theorem (DT). If $\Delta \subseteq \mathcal{W}$ and $A \in \mathcal{W}$, then $\Delta \cup \{A\} \vdash B$ if and only if $\Delta \vdash A \rightarrow B$. Sketch proof. "If" follows by adding A as a hypothesis and MP. "Only if" is shown by induction on the length of a deduction sequence for B. If B is a hypothesis or an axiom, then use either $\vdash A \rightarrow A$ [5.] (when B = A) or $\vdash (B \rightarrow (A \rightarrow B))$ [Ax1] and MP. Otherwise B is obtained from C and $C \rightarrow B$ by MP and the induction hypothesis gives $\Delta \vdash A \rightarrow C$ and $\Delta \vdash A \rightarrow (C \rightarrow B)$. Use Ax2 and twice MP to get $\Delta \vdash A \rightarrow B$.

Transitivity of Implication (TI). $\{A \rightarrow B, B \rightarrow C\} \vdash A \rightarrow C$ (Follows easily using DT.)

A (truth) valuation is a function $v: \mathcal{W} \to \{\mathsf{T},\mathsf{F}\}$, where \mathcal{W} denotes the set of wff, satisfying $v(A) \neq v(\neg A)$ and $v(A \to B) = \mathsf{F}$ if and only if $v(B) = \mathsf{F}$ and $v(A) = \mathsf{T}$. A wff A is a tautology ($\models A$ in symbols), if $v(A) = \mathsf{T}$ for every valuation v.

Theorem. Axiomatic Propositional Logic is *sound* ($\vdash A$ implies $\models A$), *consistent* (not both $\vdash A$ and $\vdash \neg A$) and *complete* ($\models A$ implies $\vdash A$).

Sketch of proof. Soundness is by induction on the length of a deduction sequence for A.

 $\mathsf{Induction \ Base:} \quad v(\mathsf{Ax1}) = \mathsf{F} \Longrightarrow v(A) = \mathsf{T} \And v(B \to A) = \mathsf{F} \Longrightarrow v(A) = \mathsf{T} \And v(A) = \mathsf{F}, \text{ contradiction}$

$$\begin{aligned} v(\mathsf{Ax2}) = \mathsf{F} &\Longrightarrow v(A \to (B \to C)) = v(A \to B) = v(A) = \mathsf{T} \And v(C) = \mathsf{F} \Longrightarrow v(B) = v(B \to C) = \mathsf{T} \Longrightarrow v(C) = \mathsf{T}, \text{ contradiction} \\ v(\mathsf{Ax3}) = \mathsf{F} &\Longrightarrow v(A \to B) = \mathsf{F} \And v(\neg B \to \neg A) = \mathsf{T} \Longrightarrow v(A) = \mathsf{T} \And v(B) = \mathsf{F} \And v(\neg B) = \mathsf{F}, \text{ contradiction} \\ \mathsf{Induction Step:} \quad v(A) = \mathsf{T} \And v(A \to B) = \mathsf{T} \Longrightarrow v(B) = \mathsf{T}, \text{ so if } A \text{ and } (A \to B) \text{ are tautologies, then so is } B \end{aligned}$$

Consistency now follows, since $\vdash A$ and $\vdash \neg A$ implies $v(A) = v(\neg A) = T$ for every valuation v, contradicting the definition of a valuation. Completeness is a consequence of Lemmas 1 and 2 below, which allow elimination of all q_i if A is a tautology, by choosing valuations u, v with $u(q_i) = T$ and $v(q_i) = F$.

Lemma 1. Let v be valuation and A a wff with set of variables p_1, p_2, \ldots, p_n . Then

$$\{q_1, q_2, \dots, q_n\} \vdash \bar{A}, \text{ where } q_i = \begin{cases} p_i, & \text{if } v(p_i) = \mathsf{T} \\ \neg p_i, & \text{if } v(p_i) = \mathsf{F} \end{cases} \text{ and } \bar{A} = \begin{cases} A, & \text{if } v(A) = \mathsf{T} \\ \neg A, & \text{if } v(A) = \mathsf{F} \end{cases}$$

Proof. Induction on the number of logical operators \neg and \rightarrow in A; \mathcal{IH} means induction hypothesis.

Lemma 2. If $\{q_1, q_2, \ldots, q_n\} \vdash A$ and $\{\neg q_1, q_2, \ldots, q_n\} \vdash A$, then $\{q_2, \ldots, q_n\} \vdash A$. *Proof.* This follows from DT and $\vdash (B \to A) \to ((\neg B \to A) \to A)$ [34.], with $B = q_1$.