Predicate Logic aka First-Order Logic

Predicate logic is a formal system consisting of the following four ingredients.
An alphabet X~ = {(,),,,~,—,V,3}JUPUFUCUV including a set P of predicate letters P, a set
F of function letters f]', a set C of constant symbols c; and a set V' of variables x;, i,n > 0.
Terms which are defined recursively:
e Every variable x; € V' and every constant ¢; € C is a term.
o If t1,...,t, are terms, then so is f]*(t1,...,t,) for every n-ary function letter f]* € F.
e Nothing else is a term.
Well formed formulae (wff for short) are also defined recursively:
P (t1,...,ty) is a wff for any terms t1,...,t, and n-ary predicate letter P" € P.
e If A and B are wff, then so are (—A) and (A — B).
e If Ais a wff, then so are (Vz;)A and (3z;)A for any variable z; € V.
e Nothing else is a wff.

Five axiom schemes for any wff A, B and C:
Axl: (A— (B—A))
Ax2: (A= (B—=C)—=((A—=B)— (A= 0))
Ax3: (((-wB) = (0A)) —» (A — B))
Ax4:  (Vx;)A(x;) — A(t), where the term t is free for z; in A
Ax5:  (Vx;)(A — B) — (A — (Vz;)B), if there is no free x; in A
Deductions are sequences of wff in which every entry is either an (instance of an) axiom, a hy-
pothesis or obtained from previous entries in the sequence D using either
Modus Ponens (MP): If A, (A — B) € D, then DU {B} is a deduction, for any A, B € W, or
Generalisation (G): If A € D, then DU {(Vz;)A} is a deduction, for any A € W and z; € V.
If C' can be deduced from the hypotheses Ay, As,... A, we write {A1, Ay,... Ay} F C.

Deduction Theorem (DT). For A CWand Ae W, if AU{A} I B using (G) only with z; which
is not free in A, then A+ A — B.

Proof. Same as in APL plus the case when B was deduced using (G), i.e. B = (Vx;)C and z; is not free in
A. Here, TH gives A+ A — C, whence A F (Va;)(A — C) by (G), and so A — (Vz;)C from Ax5 and MP.

Transitivity of Implication (Tl). {A — B, B— C}+ A — C (Asin APL from DT; no (G) needed.)

Interpretations give rise to semantics/meaning. An interpretation Z consists of a non-empty domain Dz
of objects, assignments of objects to the constant symbols Z(¢;) € Dz, as well as choices of n-ary relations
Z(P) C Dz" and an n-ary functions Z(f*): D% — Dz for all symbols P* and f!".

A valuation v in an interpretation Z assigns objects in Dz to all the variables, and hence to all terms, by set-
ting v(c;) = Z(c;) and (recursively) defining v(f(t1,...,tn)) = Z(f7)(v(t1),...,v(tn)). We write T =, A
if the valuation v in the interpretation Z satisfies the wff A, which is defined recursively:

T Ey P(t1, ... tn) if and only if (v(t1),...,v(tn)) € Z(PM);

T, (mA) ifand only if Z }£, A, i.e. T =, A does not hold;

I|:v A%B) if and only if Z =, B or Z =, —A;

v (Vx;)A if and only if Z }=,, A for all valuations w in Z with v ) for j #i.
v (3z;)A if and only if Z A for some valuation u in Z with v(’xj = u(iz] for j # 1.

Lemma. If v is a valuation in an interpretation Z then Z |=, (3x;)A if and only if Z |=, =(Vx;)(—A).

The wff A is valid or true in the interpretation T, written Z = A, if Z |=, A for all valuations v in Z. And A
is called logically valid or simply valid, written |= A, if Z |= A for all interpretations Z.

Theorem. Predicate Logic is sound (F A implies = A), consistent (not both F A and  —A) and complete
(&= A implies - A).
Proof of soundness. As for APL, this is by induction on the length of a deduction sequence for A:
Induction Base: [ Axl = A& ¥~ (B— A) = | B & [~ A, contradiction; Ax2 and Ax3 similarly.
B Axd = = (Vx;)A & [~ A(t), contradiction because t is free for x; in A.
A5 = = (Vo)(A— B) & EA& = (Vz;)B =  there are 7 and v with Z (&, B
= T}, (A— B) (as E A) = £~ (Va;)(A — B), contradiction
Induction Step: F A& E(A—=B) = A& (Aor EB) = B, so MP is sound.
E A = = (Vz;)A, because this depends on less values than = A, so G is sound.
Completeness is known as Godel's Completeness Theroem and not proved here.



