
Predicate Logic aka First-Order Logic

Predicate logic is a formal system consisting of the following four ingredients.

An alphabet Σ = {(, ), , ,¬,→,∀,∃}∪̇P∪̇F∪̇C∪̇V including a set P of predicate letters Pn

i
, a set

F of function letters fn

i
, a set C of constant symbols ci and a set V of variables xi, i, n ≥ 0.

Terms which are defined recursively:

• Every variable xi ∈ V and every constant ci ∈ C is a term.

• If t1, . . . , tn are terms, then so is fn

i
(t1, . . . , tn) for every n-ary function letter fn

i
∈ F .

• Nothing else is a term.

Well formed formulæ (wff for short) are also defined recursively:

• Pn

i
(t1, . . . , tn) is a wff for any terms t1, . . . , tn and n-ary predicate letter Pn

i
∈ P.

• If A and B are wff, then so are (¬A) and (A → B).

• If A is a wff, then so are (∀xi)A and (∃xi)A for any variable xi ∈ V .
• Nothing else is a wff.

Five axiom schemes for any wff A, B and C:
Ax1: (A → (B → A))
Ax2: ((A → (B → C)) → ((A → B) → (A → C)))
Ax3: (((¬B) → (¬A)) → (A → B))
Ax4: (∀xi)A(xi) → A(t), where the term t is free for xi in A

Ax5: (∀xi)(A → B) → (A → (∀xi)B), if there is no free xi in A

Deductions are sequences of wff in which every entry is either an (instance of an) axiom, a hy-
pothesis or obtained from previous entries in the sequence D using either

Modus Ponens (MP): If A, (A → B) ∈ D, then D ∪ {B} is a deduction, for any A,B ∈ W; or
Generalisation (G): If A ∈ D, then D ∪ {(∀xi)A} is a deduction, for any A ∈ W and xi ∈ V .
If C can be deduced from the hypotheses A1, A2, . . . An we write {A1, A2, . . . An} ⊢ C.

Deduction Theorem (DT). For ∆ ⊆ W and A ∈ W, if ∆∪{A} ⊢ B using (G) only with xi which
is not free in A, then ∆ ⊢ A → B.
Proof. Same as in APL plus the case when B was deduced using (G), i.e. B = (∀xi)C and xi is not free in

A. Here, IH gives ∆ ⊢ A → C, whence ∆ ⊢ (∀xi)(A → C) by (G), and so A → (∀xi)C from Ax5 and MP.

Transitivity of Implication (TI). {A → B, B → C} ⊢ A → C (As in APL from DT; no (G) needed.)

Interpretations give rise to semantics/meaning. An interpretation I consists of a non-empty domain DI

of objects, assignments of objects to the constant symbols I(ci) ∈ DI , as well as choices of n-ary relations
I(Pn

i ) ⊆ DI
n and an n-ary functions I(fn

i ) : D
n
I
→ DI for all symbols Pn

i and fn
i .

A valuation v in an interpretation I assigns objects in DI to all the variables, and hence to all terms, by set-
ting v(ci) = I(ci) and (recursively) defining v(fn

i (t1, . . . , tn)) = I(fn
i )(v(t1), . . . , v(tn)). We write I |=v A

if the valuation v in the interpretation I satisfies the wff A, which is defined recursively:

• I |=v Pn
i (t1, . . . , tn) if and only if (v(t1), . . . , v(tn)) ∈ I(Pn

i );
• I |=v (¬A) if and only if I 6|=v A, i.e. I |=v A does not hold;
• I |=v (A → B) if and only if I |=v B or I |=v ¬A;
• I |=v (∀xi)A if and only if I |=u A for all valuations u in I with v(xj) = u(xj) for j 6= i.
• I |=v (∃xi)A if and only if I |=u A for some valuation u in I with v(xj) = u(xj) for j 6= i.

Lemma. If v is a valuation in an interpretation I, then I |=v (∃xi)A if and only if I |=v ¬(∀xi)(¬A).

The wff A is valid or true in the interpretation I, written I |= A, if I |=v A for all valuations v in I. And A

is called logically valid or simply valid, written |= A, if I |= A for all interpretations I.

Theorem. Predicate Logic is sound (⊢ A implies |= A), consistent (not both ⊢ A and ⊢ ¬A) and complete

(|= A implies ⊢ A).
Proof of soundness. As for APL, this is by induction on the length of a deduction sequence for A:

Induction Base: 6|= Ax1 ⇒ |= A & 6|= (B → A) ⇒ |= B & 6|= A, contradiction; Ax2 and Ax3 similarly.
6|= Ax4 ⇒ |= (∀xi)A & 6|= A(t), contradiction because t is free for xi in A.
6|= Ax5 ⇒ |= (∀xi)(A → B) & |= A & 6|= (∀xi)B ⇒ there are I and v with I 6|=v B

⇒ I 6|=v (A → B) (as |= A) ⇒ 6|= (∀xi)(A → B), contradiction

Induction Step: |= A & |= (A → B) ⇒ |= A & (6|= A or |= B) ⇒ |= B, so MP is sound.
|= A ⇒ |= (∀xi)A, because this depends on less values than |= A, so G is sound.

Completeness is known as Gödel’s Completeness Theroem and not proved here.


