Predicate Logic aka First-Order Logic

Predicate logic is a formal system consisting of the following four ingredients.

An alphabet $\Sigma = \{(,), , \neg, \rightarrow, \forall, \exists\} \dot{\cup} \mathcal{P} \dot{\cup} \mathcal{F} \dot{\cup} \mathcal{C} \dot{\cup} V$ including a set \mathcal{P} of *predicate letters* P_i^n , a set

 \mathcal{F} of function letters f_i^n , a set \mathcal{C} of constant symbols c_i and a set V of variables x_i , $i, n \geq 0$. **Terms** which are defined recursively:

- Every variable $x_i \in V$ and every constant $c_i \in C$ is a term.
- If t_1, \ldots, t_n are terms, then so is $f_i^n(t_1, \ldots, t_n)$ for every *n*-ary function letter $f_i^n \in \mathcal{F}$.
- Nothing else is a term.

Well formed formulæ (wff for short) are also defined recursively:

- $P_i^n(t_1,\ldots,t_n)$ is a wff for any terms t_1,\ldots,t_n and *n*-ary predicate letter $P_i^n \in \mathcal{P}$.
- If A and B are wff, then so are $(\neg A)$ and $(A \rightarrow B)$.
- If A is a wff, then so are $(\forall x_i)A$ and $(\exists x_i)A$ for any variable $x_i \in V$.
- Nothing else is a wff.

Five axiom schemes for any wff A, B and C:

- Ax1: $(A \to (B \to A))$
 - Ax2: $((A \to (B \to C)) \to ((A \to B) \to (A \to C)))$
- Ax3: $(((\neg B) \rightarrow (\neg A)) \rightarrow (A \rightarrow B))$
- Ax4: $(\forall x_i)A(x_i) \rightarrow A(t)$, where the term t is free for x_i in A
- Ax5: $(\forall x_i)(A \rightarrow B) \rightarrow (A \rightarrow (\forall x_i)B)$, if there is no free x_i in A
- Deductions are sequences of wff in which every entry is either an (instance of an) axiom, a hypothesis or obtained from previous entries in the sequence \mathcal{D} using either

Modus Ponens (MP): If $A, (A \to B) \in \mathcal{D}$, then $\mathcal{D} \cup \{B\}$ is a deduction, for any $A, B \in \mathcal{W}$; or *Generalisation* (G): If $A \in \mathcal{D}$, then $\mathcal{D} \cup \{(\forall x_i)A\}$ is a deduction, for any $A \in \mathcal{W}$ and $x_i \in V$. If C can be deduced from the hypotheses $A_1, A_2, \ldots A_n$ we write $\{A_1, A_2, \ldots A_n\} \vdash C$.

Deduction Theorem (DT). For $\Delta \subseteq W$ and $A \in W$, if $\Delta \cup \{A\} \vdash B$ using (G) only with x_i which is not free in A, then $\Delta \vdash A \rightarrow B$.

Proof. Same as in APL plus the case when B was deduced using (G), i.e. $B = (\forall x_i)C$ and x_i is not free in A. Here, \mathcal{IH} gives $\Delta \vdash A \rightarrow C$, whence $\Delta \vdash (\forall x_i)(A \rightarrow C)$ by (G), and so $A \rightarrow (\forall x_i)C$ from Ax5 and MP.

Transitivity of Implication (TI). $\{A \rightarrow B, B \rightarrow C\} \vdash A \rightarrow C$ (As in APL from DT; no (G) needed.)

Interpretations give rise to semantics/meaning. An interpretation \mathcal{I} consists of a non-empty domain $D_{\mathcal{I}}$ of objects, assignments of objects to the constant symbols $\mathcal{I}(c_i) \in D_{\mathcal{I}}$, as well as choices of *n*-ary relations $\mathcal{I}(P_i^n) \subseteq D_{\mathcal{I}}^n$ and an *n*-ary functions $\mathcal{I}(f_i^n) \colon D_{\mathcal{I}}^n \to D_{\mathcal{I}}$ for all symbols P_i^n and f_i^n .

A valuation v in an interpretation \mathcal{I} assigns objects in $D_{\mathcal{I}}$ to all the variables, and hence to all terms, by setting $v(c_i) = \mathcal{I}(c_i)$ and (recursively) defining $v(f_i^n(t_1, \ldots, t_n)) = \mathcal{I}(f_i^n)(v(t_1), \ldots, v(t_n))$. We write $\mathcal{I} \models_v A$ if the valuation v in the interpretation \mathcal{I} satisfies the **wff** A, which is defined recursively:

- $\mathcal{I} \models_v P_i^n(t_1, \ldots, t_n)$ if and only if $(v(t_1), \ldots, v(t_n)) \in \mathcal{I}(P_i^n)$;
- $\mathcal{I} \models_v (\neg A)$ if and only if $\mathcal{I} \not\models_v A$, i.e. $\mathcal{I} \models_v A$ does not hold;
- $\mathcal{I} \models_v (A \to B)$ if and only if $\mathcal{I} \models_v B$ or $\mathcal{I} \models_v \neg A$;
- $\mathcal{I} \models_v (\forall x_i) A$ if and only if $\mathcal{I} \models_u A$ for all valuations u in \mathcal{I} with $v(x_j) = u(x_j)$ for $j \neq i$. $\mathcal{I} \models_v (\exists x_i) A$ if and only if $\mathcal{I} \models_u A$ for some valuation u in \mathcal{I} with $v(x_j) = u(x_j)$ for $j \neq i$.

Lemma. If v is a valuation in an interpretation \mathcal{I} , then $\mathcal{I} \models_v (\exists x_i) A$ if and only if $\mathcal{I} \models_v \neg (\forall x_i) (\neg A)$.

The wff A is valid or true in the interpretation \mathcal{I} , written $\mathcal{I} \models A$, if $\mathcal{I} \models_v A$ for all valuations v in \mathcal{I} . And A is called *logically valid* or simply valid, written $\models A$, if $\mathcal{I} \models A$ for all interpretations \mathcal{I} .

Theorem. Predicate Logic is sound ($\vdash A$ implies $\models A$), consistent (not both $\vdash A$ and $\vdash \neg A$) and complete $(\models A \text{ implies} \vdash A).$

Proof of soundness. As for APL, this is by induction on the length of a deduction sequence for A:

- Induction Base: $\not\models Ax1 \Rightarrow \models A \& \not\models (B \rightarrow A) \Rightarrow \models B \& \not\models A$, contradiction; Ax2 and Ax3 similarly. $\not\models Ax4 \Rightarrow \models (\forall x_i)A \& \not\models A(t)$, contradiction because t is free for x_i in A.
 - $\not\models Ax5 \Rightarrow \models (\forall x_i)(A \rightarrow B) \& \models A \& \not\models (\forall x_i)B \Rightarrow \text{ there are } \mathcal{I} \text{ and } v \text{ with } \mathcal{I} \not\models_v B$ $\Rightarrow \mathcal{I} \not\models_v (A \to B) (as \models A) \Rightarrow \not\models (\forall x_i)(A \to B), \text{ contradiction}$

 $\models A \& \models (A \rightarrow B) \Rightarrow \models A \& (\not\models A \text{ or } \models B) \Rightarrow \models B$, so MP is sound. Induction Step: $\models A \Rightarrow \models (\forall x_i)A$, because this depends on less values than $\models A$, so G is sound.

Completeness is known as Gödel's Completeness Theroem and not proved here.