Predicate Logic aka First-Order Logic

Predicate logic is a formal system consisting of the following four ingredients.
An alphabet $\Sigma=\{(),,,, \neg, \rightarrow, \forall, \exists\} \dot{\cup} \mathcal{P} \cup \dot{\mathcal{F}} \dot{\mathcal{C}} \dot{\cup} V$ including a set \mathcal{P} of predicate letters P_{i}^{n}, a set \mathcal{F} of function letters f_{i}^{n}, a set \mathcal{C} of constant symbols c_{i} and a set V of variables $x_{i}, i, n \geq 0$.
Terms which are defined recursively:

- Every variable $x_{i} \in V$ and every constant $c_{i} \in \mathcal{C}$ is a term.
- If t_{1}, \ldots, t_{n} are terms, then so is $f_{i}^{n}\left(t_{1}, \ldots, t_{n}\right)$ for every n-ary function letter $f_{i}^{n} \in \mathcal{F}$.
- Nothing else is a term.

Well formed formulæ (wff for short) are also defined recursively:

- $P_{i}^{n}\left(t_{1}, \ldots, t_{n}\right)$ is a wff for any terms t_{1}, \ldots, t_{n} and n-ary predicate letter $P_{i}^{n} \in \mathcal{P}$.
- If A and B are wff, then so are $(\neg A)$ and $(A \rightarrow B)$.
- If A is a wff, then so are $\left(\forall x_{i}\right) A$ and $\left(\exists x_{i}\right) A$ for any variable $x_{i} \in V$.
- Nothing else is a wff.

Five axiom schemes for any wff A, B and C :

$$
\begin{array}{ll}
\text { Ax1: } & (A \rightarrow(B \rightarrow A)) \\
\text { Ax2: } & ((A \rightarrow(B \rightarrow C)) \rightarrow((A \rightarrow B) \rightarrow(A \rightarrow C))) \\
\text { Ax3: } & (((\neg B) \rightarrow(\neg A)) \rightarrow(A \rightarrow B)) \\
\text { Ax4: } & \left(\forall x_{i}\right) A\left(x_{i}\right) \rightarrow A(t) \text {, where the term } t \text { is free for } x_{i} \text { in } A \\
\text { Ax5: } & \left(\forall x_{i}\right)(A \rightarrow B) \rightarrow\left(A \rightarrow\left(\forall x_{i}\right) B\right), \text { if there is no free } x_{i} \text { in } A
\end{array}
$$

Deductions are sequences of wff in which every entry is either an (instance of an) axiom, a hypothesis or obtained from previous entries in the sequence \mathcal{D} using either
Modus Ponens (MP): If $A,(A \rightarrow B) \in \mathcal{D}$, then $\mathcal{D} \cup\{B\}$ is a deduction, for any $A, B \in \mathcal{W}$; or Generalisation (G): If $A \in \mathcal{D}$, then $\mathcal{D} \cup\left\{\left(\forall x_{i}\right) A\right\}$ is a deduction, for any $A \in \mathcal{W}$ and $x_{i} \in V$.
If C can be deduced from the hypotheses $A_{1}, A_{2}, \ldots A_{n}$ we write $\left\{A_{1}, A_{2}, \ldots A_{n}\right\} \vdash C$.
Deduction Theorem (DT). For $\Delta \subseteq \mathcal{W}$ and $A \in \mathcal{W}$, if $\Delta \cup\{A\} \vdash B$ using (G) only with x_{i} which is not free in A, then $\Delta \vdash A \rightarrow B$.
Proof. Same as in APL plus the case when B was deduced using (G), i.e. $B=\left(\forall x_{i}\right) C$ and x_{i} is not free in A. Here, $\mathcal{I H}$ gives $\Delta \vdash A \rightarrow C$, whence $\Delta \vdash\left(\forall x_{i}\right)(A \rightarrow C)$ by (G), and so $A \rightarrow\left(\forall x_{i}\right) C$ from A×5 and MP.
Transitivity of Implication (TI). $\{A \rightarrow B, B \rightarrow C\} \vdash A \rightarrow C$ (As in APL from DT; no (G) needed.)
Interpretations give rise to semantics/meaning. An interpretation \mathcal{I} consists of a non-empty domain $D_{\mathcal{I}}$ of objects, assignments of objects to the constant symbols $\mathcal{I}\left(c_{i}\right) \in D_{\mathcal{I}}$, as well as choices of n-ary relations $\mathcal{I}\left(P_{i}^{n}\right) \subseteq D_{\mathcal{I}}{ }^{n}$ and an n-ary functions $\mathcal{I}\left(f_{i}^{n}\right): D_{\mathcal{I}}^{n} \rightarrow D_{\mathcal{I}}$ for all symbols P_{i}^{n} and f_{i}^{n}.
A valuation v in an interpretation \mathcal{I} assigns objects in $D_{\mathcal{I}}$ to all the variables, and hence to all terms, by setting $v\left(c_{i}\right)=\mathcal{I}\left(c_{i}\right)$ and (recursively) defining $v\left(f_{i}^{n}\left(t_{1}, \ldots, t_{n}\right)\right)=\mathcal{I}\left(f_{i}^{n}\right)\left(v\left(t_{1}\right), \ldots, v\left(t_{n}\right)\right)$. We write $\mathcal{I} \models_{v} A$ if the valuation v in the interpretation \mathcal{I} satisfies the wff A, which is defined recursively:

- $\mathcal{I} \models_{v} P_{i}^{n}\left(t_{1}, \ldots, t_{n}\right)$ if and only if $\left(v\left(t_{1}\right), \ldots, v\left(t_{n}\right)\right) \in \mathcal{I}\left(P_{i}^{n}\right)$;
- $\mathcal{I} \models_{v}(\neg A)$ if and only if $\mathcal{I} \not \models_{v} A$, i.e. $\mathcal{I} \models_{v} A$ does not hold;
- $\mathcal{I} \models_{v}(A \rightarrow B)$ if and only if $\mathcal{I} \models_{v} B$ or $\mathcal{I} \models_{v} \neg A$;
- $\mathcal{I} \models_{v}\left(\forall x_{i}\right) A$ if and only if $\mathcal{I} \models_{u} A$ for all valuations u in \mathcal{I} with $v\left(x_{j}\right)=u\left(x_{j}\right)$ for $j \neq i$.
- $\mathcal{I} \models_{v}\left(\exists x_{i}\right) A$ if and only if $\mathcal{I}=_{u} A$ for some valuation u in \mathcal{I} with $v\left(x_{j}\right)=u\left(x_{j}\right)$ for $j \neq i$.

Lemma. If v is a valuation in an interpretation \mathcal{I}, then $\mathcal{I} \models_{v}\left(\exists x_{i}\right) A$ if and only if $\mathcal{I} \models_{v} \neg\left(\forall x_{i}\right)(\neg A)$.
The wff A is valid or true in the interpretation \mathcal{I}, written $\mathcal{I} \models A$, if $\mathcal{I} \models_{v} A$ for all valuations v in \mathcal{I}. And A is called logically valid or simply valid, written $\models A$, if $\mathcal{I} \models A$ for all interpretations \mathcal{I}.
Theorem. Predicate Logic is sound $(\vdash A$ implies $\models A$), consistent (not both $\vdash A$ and $\vdash \neg A$) and complete $(\models A$ implies $\vdash A)$.
Proof of soundness. As for APL, this is by induction on the length of a deduction sequence for A :
Induction Base: $\forall \vDash \mathrm{A} \times 1 \Rightarrow \models A \& \not \models(B \rightarrow A) \Rightarrow \models B \& \not \models A$, contradiction; $\mathrm{A} \times 2$ and $\mathrm{A} \times 3$ similarly.
$\not \models \mathrm{A} \times 4 \Rightarrow \vDash\left(\forall x_{i}\right) A \& \not \vDash A(t)$, contradiction because t is free for x_{i} in A.
$\not \vDash \mathrm{A} \times 5 \Rightarrow \models\left(\forall x_{i}\right)(A \rightarrow B) \& \models A \& \not \vDash\left(\forall x_{i}\right) B \Rightarrow$ there are \mathcal{I} and v with $\mathcal{I} \not \forall_{v} B$
$\Rightarrow \mathcal{I} \not \vDash_{v}(A \rightarrow B)($ as $\models A) \Rightarrow \not \models\left(\forall x_{i}\right)(A \rightarrow B)$, contradiction
Induction Step: $\models A \& \models(A \rightarrow B) \Rightarrow \models A \&(\not \models A$ or $\models B) \Rightarrow \models B$, so MP is sound.
$\vDash A \Rightarrow \models\left(\forall x_{i}\right) A$, because this depends on less values than $\models A$, so G is sound.
Completeness is known as Gödel's Completeness Theroem and not proved here.

