Semantic Tableaux

Semantic tableaux are rooted trees whose nodes are labelled by sets of wff.

In propositional logic, the rules for extending such trees all follow from the three basic rules:

The derived rules are:

These rules are such that every finite set of **wff** of propositional logic is eventually split up into atomic constituents. **Heuristic:** Apply non-branching rules before branching rules. In first order logic, there are the following additional rules:

The last two are *instantiation rules*. **Heuristic:** Always do \exists -instantiation before \forall -instantiation.

A branch of a tableau is *closed* if it contains a formula ϕ and its negation $\neg \phi$. The tableau is *closed* if all its branches are closed. NOTE: \forall -formulæ can be instantiated for every possible term and hence potentially infinitely many times, so that tableaux can have infinite branches.

Main Fact. A set S of **wff** is inconsistent if and only if there is a closed semantic tableaux for S. WARNING: This does not mean that you can conclude that S is consistent, if a certain tableaux for S does not close. For that you have to argue that every possible tableau for S does not close! Here are two examples.

Proving
$$(\exists x)(\exists y)R(x,y) \rightarrow (\exists y)(\exists x)R(x,y)$$

 $\neg ((\exists x)(\exists y)R(x,y) \rightarrow (\exists y)(\exists x)R(x,y))$
 $(\exists x)(\exists y)R(x,y)$
 $\neg (\exists y)(\exists x)R(x,y)$
 $(\forall y) \neg (\exists x)R(x,y)$
 $(\forall y)(\forall x) \neg R(x,y)$
 $(\exists y)R(c,y)$
 $|$
 $R(c,d)$
 $|$
 $(\forall x) \neg R(x,d)$
 $|$
 $\neg R(c,d)$
 $|$
 $(\forall z) \neg R(x,d)$
 $|$
 $(\exists z)R(c,d)$
 $|$
 $(\forall z) \neg R(x,d)$
 $|$
 $(\exists z)R(z,d)$
 $|$
 $(\forall z) \neg R(z,d)$
 $|$
 $(\forall z) \neg R(z,d)$
 $|$
 $(\forall z) \neg R(z,d)$
 $|$
 $(\exists z)R(z,d)$
 $|$
 $(\forall z) \neg R(z,d)$
 $|$
 $(\exists z)R(z,d)$
 $|$
 $(\forall z) \neg R(z,d)$
 $(\forall z) \neg R(z,d))$
 $(\forall z) \neg R(z,d)$
 $(\forall z) \neg R(z,d))$
 $(\forall z) \neg R(z,d))$

The following is a valid argument:

If something eats mice, then it is a cat or a bird of prey. Birds of prey are not mammals, but cats are. This beast eats mice and is a mammal. Therefore it must be a cat.

Let E(x), C(x), B(x) and M(x) mean x eats mice, is a cat, is a bird of prey and is a mammal, respectively.