MA203 Linear Algebra - Problem Sheet 1

January 20, 2017, Lecturer: Claas Röver
Question 1. Let $v=\left(v_{1}, v_{2}, \ldots, v_{n}\right) \in \mathbb{R}^{n}$. First state the definition of the norm of v, written $\|v\|$. Then prove that $\|\alpha v\|=|\alpha|\|v\|$ for any $\alpha \in \mathbb{R}$, where $|\alpha|$ denotes the absolute value of α. Hint: A direct calculation.
Now deduce that $\left\|\frac{v}{\|v\|}\right\|=1$.
Question 2. Let $u, v, w \in \mathbb{R}^{n}$. First state the definition of the dot product $v \cdot w$. Then prove that $u \cdot(v+w)=u \cdot v+u \cdot w$. Hint: Another direct calculation.

Question 3. For each of the following expressions decide whether it makes sense, and if so evaluate it.
(a) $4(2,3)-(3,1,0)$
(d) $5 \cdot(-2,6)$
(g) $(2,0,0) \cdot((-1,1,0)+(1,0,1))$
(b) $(2,-2) \cdot(-3,5)$
(e) $(4,2,1) / 4$
(h) $3\left(\left(\frac{2}{3}, \frac{1}{3}\right)+\frac{1}{3}(-2,-1)\right)$
(c) $(1,0) \cdot(1,1,1)$
(f) $(5,2) /(6,3)$
(k) $7\|(-1,2,1,-2)\|$

Question 4. Consider the following vectors in \mathbb{R}^{2} :

$$
p=(2,-1), \quad q=(3,2.5), \quad r=(-3,4) \text { and } s=(-1,1) .
$$

(a) Calculate $p-q$ and $p+q$ and then draw them in a sketch together with p and q.
(b) Calculate the norms of r and s.
(c) Calculate the dot products $\alpha=p \cdot q$ and $\beta=r \cdot q$. In a diagram draw the five vectors

$$
u=\frac{\alpha}{\|p\|^{2}} p, \quad v=\frac{\beta}{\|r\|^{2}} r, \quad p, \quad r \quad \text { and } u .
$$

Describe the vector u in relation to p and q in words.
(d) Give a parametric description of the line through p and r, and find the points where the line intersects the coordinate axes.

Question 5. Calculate the point, if it exists, where the line through the origin and $(2,3,5)$ intersects the plane through the three points $(1,-1,2),(0,-2,1)$ and $(2,3,-1)$.

Question 6. Let $u, v, w \in \mathbb{R}^{n}$ and assume that v and w are non-zero and perpendicular to each other. Show that $\frac{u \cdot v}{\|v\|^{2}} v$ is the component of u in the direction of v.
Question 7. (a) Given $p=(2.2,-0.3) \in \mathbb{R}^{2}$, find all vectors in \mathbb{R}^{2} that are perpendicular to p and have norm equal to 1 .
(b) Given $p=\left(p_{1}, p_{2}\right) \in \mathbb{R}^{2}$, find all vectors in \mathbb{R}^{2} that are perpendicular to p and have norm equal to 1 .
(c) How many solutions does the problem in part (b) have, when $p \in \mathbb{R}^{3}$? What if $p \in \mathbb{R}^{4}$? Do these solutions form particular shapes, and if so which?

Question 8. Is it true that, if the n-dimensional vectors p and q are perpendicular to each other, then $p+q$ is perpendicular to $p-q$? If not, can you give a condition that makes it true?

Question 9. In your own words explain the following words used frequently in mathematics: deduce, calculate, prove, decide, justify, verify, give an example, state, describe, evaluate.

