MA203 Linear Algebra - Assignment 1

January 26, 2017, Lecturer: Claas Röver
Hand in your solution at the beginning of the lecture on Friday, 3 Feb 2016.
Question 1. Given $u=(2,-3,4), v=(-1,5,-2)$ and $w=(-3,1,4)$ in \mathbb{R}^{3}, find
(a) the norm of $u+v$, i.e. $\|u+v\|$,
(b) a vector of length one which is parallel to w,
(c) a parametric equation for the plane through the points u, v and w, and
(d) which, if any, of the points $p=(8,-19,16)$ and $q=(-8,21,-12)$ lies on the line through u and v.

Question 2. (a) Give the definition of the dot product of two vectors $u, v \in \mathbb{R}^{n}$ and say how it can be used to find the angle between u and v.
(b) Describe all vectors $u \in \mathbb{R}^{3}$ such that $(3,2,1) \cdot u=2$ and $u \cdot(1,2,-1)=1$.

Hint: Let $u=(x, y, z)$, find a system of linear equations and solve it.
Question 3. Is it true that, if the n-dimensional non-zero vectors p and q are perpendicular to each other, then $p+q$ is perpendicular to $p-q$? If not, find a condition that makes it true?

Question 4. Solve the following system of linear equations

$$
\begin{array}{ccccc}
-w & +2 x & -3 y & & =-13 \\
3 w & & +2 y & +z & =16 \\
& -3 x & & 2 z & =11 \\
2 w & -2 x & +y & -z & =5
\end{array}
$$

