MA203 Linear Algebra - Problem Sheet 3

February 3, 2017, Lecturer: Claas Röver
Question 1. Given the matrices

$$
A=\left(\begin{array}{ccc}
2 & 8 & -4 \\
-1 & 3 & -2
\end{array}\right), \quad B=\left(\begin{array}{ccc}
1 & 2 & 0 \\
-2 & -4 & 5 \\
-3 & 0 & 2
\end{array}\right) \quad \text { and } \quad C=\left(\begin{array}{ll}
5 & 6 \\
4 & 5 \\
3 & 4 \\
2 & 3
\end{array}\right)
$$

decide for each of the products $A B, B A, A C, C A, B C, C B, A B C, B C A$ and $C A B$ whether it is defined, and if so, then calculate the product and say what its dimensions are.
QUESTION 2. Let $A=\left(\begin{array}{lll}a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2} \\ a_{3} & b_{3} & c_{3}\end{array}\right), v=\left(\begin{array}{l}v_{1} \\ v_{2} \\ v_{3}\end{array}\right)$ and $w=\left(\begin{array}{l}w_{1} \\ w_{2} \\ w_{3}\end{array}\right)$ be an arbitrary 3×3 matrix and two arbitrary 3 -dimensional column vectors. Verify by direct calculation that $A(v+w)=A v+A w$.

Question 3. Let A be the matrix from Question 2. Calculate $A\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)$ and $\left(\begin{array}{lll}1 & 0 & 0\end{array}\right) A$. Can you guess what the results of $A\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right), A\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right),\left(\begin{array}{lll}0 & 1 & 0\end{array}\right) A$ and $\left(\begin{array}{lll}0 & 0 & 1\end{array}\right) A$ will be? Check whether you were right.

Question 4. Find all solutions of the matrix equation

$$
\left(\begin{array}{cccc}
-1 & 2 & -4 & 0 \\
3 & -2 & 1 & 3 \\
-2 & 0 & 2 & 3 \\
1 & 3 & 0 & -1
\end{array}\right)\left(\begin{array}{l}
w \\
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{c}
-8 \\
18 \\
7 \\
-4
\end{array}\right) .
$$

Question 5. Calculate $\left(\begin{array}{cccc}-5 & 40 & -30 & 30 \\ 11 & -2 & 23 & 63 \\ -47 & -11 & 19 & 24 \\ 28 & 34 & 39 & 4\end{array}\right)\left(\begin{array}{cccc}-1 & 2 & -4 & 0 \\ 3 & -2 & 1 & 3 \\ -2 & 0 & 2 & 3 \\ 1 & 3 & 0 & -1\end{array}\right)$. Use this result to verify your answer to Question 4.

