MA211 Calculus I - Problem Sheet 1

September 12, 2016, Lecturer: Claas Röver
Question 1. For each of the following functions, determine its domain and range and decide whether it is one-to-one.
(a) $f(x)=x^{3}$
(b) $\quad f(x)=\frac{1}{3 x-5}$
(c) $f(x)=x^{2}-2$
(d) $g(x)=\sqrt{2-x}$
(e) $g(t)=e^{t}$
(f) $g(x)=(x-2)^{2}$

Question 2. For each of the following functions, give a largest domain on which it is one-to-one and then invert the function on that domain.
(a) $f(x)=\frac{1}{(x+2)^{2}}$
(b) $f(x)=\frac{1}{3 x-5}$
(c) $f(x)=x^{2}-2 x$
(d) $g(x)=\sqrt{2-x}$
(e) $g(t)=e^{t}$
(f) $g(x)=(x+2)^{2}$

Question 3. For each of the following statements decide whether it is true or false.
(a) Every function is invertible.
(b) A function that is invertible must be continuous.
(c) A function is injective if and only if it is one-to-one.
(d) Every one-to-one function has an inverse.
(e) A function that has an inverse must be injective.
(f) A function f is injective if $x_{1}=x_{2}$ implies $f\left(x_{1}\right)=f\left(x_{2}\right)$.
(g) If the function f is invertible, then there exists a function g such that $g(f(x))=x$ for all x in the domain of f.

Question 4. Give the definition of an injective function. Then argue that a function f is injective, if its derivative f^{\prime} is continuous and never zero.
Hint: Recall the notion of a monotonic funtion.
Question 5. Show that $f(x)=\frac{4 x^{3}}{x^{2}+1}$ has an inverse and find $\left(f^{-1}\right)^{\prime}(2)$.
Question 6. Assume that the function $f(x)$ satisfies $f^{\prime}(x)=\frac{1}{x}$, and that f is one-to-one. If $y=f^{-1}(x)$, show that $\frac{d y}{d x}=y$.
Question 7. Argue that $\tan \left(\tan ^{-1}(x)\right)=x$ for all real x, but that $\tan ^{-1}(\tan (x))$ only holds for $-\pi / 2<x<\pi / 2$.
Question 8. Using an apropriate right-angled triangle, show that $\cos \left(\tan ^{-} 1(2)\right)=1 / \sqrt{(5)}$.
Question 9. Verify the following by calculating a suitable derivative.
(a) $\int \frac{1}{\sqrt{a^{2}-x^{2}}} d x=\sin ^{-1}\left(\frac{x}{a}\right)$ for $a>0$
(b) $\int \frac{1}{a^{2}+x^{2}} d x=\frac{1}{a} \tan ^{-1}\left(\frac{x}{a}\right)$

