MA211 Calculus I - Problem Sheet 3

September 26, 2016, Lecturer: Claas Röver
Question 1. For each of the following statements decide whether it is true or false.
(a) The function $f(x)=x^{3}-2 x^{2}-4$ has an inverse function.
(b) Every one-to-one function $f: \mathbf{R} \rightarrow \mathbb{R}$ has range equal to \mathbb{R}.
(c) The hyperbolic sine is a periodic function, just like the trigonometric sine.
(d) The hyperbolic sine is an odd and one-to-one function.

Question 2. Let $f(x)=A e^{k x}+B e^{-k x}$ with $A, B, k \in \mathbb{R}$ and $k>0$.
(a) Verify that $f^{\prime \prime}(x)=k^{2} f(x)$.
(b) Find constants C and D such that $f(x)=C \cosh (x)+D \sinh (x)$ holds for all $x \in \mathbb{R}$.
(c) Determine A and B so that $f(0)=6$ and $f^{\prime}(0)=0$ holds.
(d) Give a condition ensuring that $f(x)=0$ has a solution.

Question 3. Use integration by parts to derive the following formulae.
(a) $\int \sin ^{n}(x) d x=-\frac{1}{n} \cos (x) \sin ^{n-1}(x)+\frac{n-1}{n} \int \sin ^{n-2}(x) d x$
(b) $\quad \int \sin ^{-1}(x) d x=x \sin ^{-1}(x)+\sqrt{1-x^{2}}+C, \quad C=$ const.

Question 4. Find the following indefinite integrals.
(a) $\int x^{2} \ln (x) d x$
(b) $\int(2 x-1) e^{x^{2}-x+1} d x$
(c) $\int \sin ^{5}(x) \cos (x) d x$
(d) $\int e^{x} \cos (x) d x$

Question 5. Evaluate the following integrals.
(a) $\int_{0}^{1} \frac{3}{\sqrt{x^{2}+4 x+3}} d x$
(b) $\int_{-1}^{1} \cosh (x) d x$
(c) $\int_{0}^{\ln (3)} x \sinh \left(x^{2}+\ln (2)\right) d x$

