MA211 Calculus I – Problem Sheet 4

October 3, 2016, Lecturer: Claas Röver

- QUESTION 1. Assume that the sequences $(a_i)_{i \in \mathbb{N}}$ and $(b_i)_{i \in \mathbb{N}}$ are both convergent and prove the following.
 - (a) The sequence $(s_i)_{i \in \mathbb{N}}$ defined $s_i = a_i + b_i$ is convergent and

$$\lim_{i \to \infty} s_i = (\lim_{i \to \infty} a_i) + (\lim_{i \to \infty} b_i)$$

In other words, the sum of two convergent sequences is convergent with limit equal to the sum of the limits.

(b) The sequence $(p_i)_{i \in \mathbb{N}}$ defined $p_i = a_i b_i$ is convergent and

$$\lim_{i \to \infty} p_i = (\lim_{i \to \infty} a_i)(\lim_{i \to \infty} b_i).$$

In other words, the product of two convergent sequences is convergent with limit equal to the product of the limits.

QUESTION 2. Find examples for each of the following situations.

- (a) Two divergent sequences (a_i) and (b_i) such that the sequence (a_ib_i) is convergent.
- (b) A convergent sequence (a_i) and a divergent sequence (b_i) such that the sequence (a_ib_i) is (i) convergent or (ii) divergent.
- (c) Two convergent sequences (a_i) and (b_i) with $b_i \neq 0$ for $i \in \mathbb{N}$ such that the sequence (a_i/b_i) is divergent.
- QUESTION 3. For each of the following improper integrals, decide whether it exists and if so calculate its value.

(a)
$$\int_{0}^{2} \frac{1}{x^{2}} dx$$
 (b) $\int_{0}^{4} \frac{1}{\sqrt{x}} dx$ (c) $\int_{0}^{\infty} \sin(x) dx$ (d) $\int_{-\infty}^{1} e^{x-1} dx$

(e)
$$\int_{0}^{\infty} \frac{1}{\sqrt{x^3 + x}} dx$$
 (f) $\int_{0}^{1} x \ln(x) dx$ (g) $\int_{0}^{\infty} x e^{-x} dx$ (h) $\int_{-\infty}^{\infty} x e^{-x^2} dx$