MA211 Calculus I - Assignment 2

October 10, 2016, Lecturer: Claas Röver
Hand in your solution at the beginning of the lecture on Monday, $\mathbf{1 7}$ Oct 2016.
Question 1. Let f^{-1} be the inverse function of a one-to-one function f.
(a) State the two defining equations for f^{-1}.
(b) Using part (a) and the chain rule, show that

$$
\left(f^{-1}\right)^{\prime}(x)=\frac{1}{f^{\prime}\left(f^{-1}(x)\right)} .
$$

(c) Use part (b) to show that

$$
\frac{d}{d x}\left(\sin ^{-1}(x)\right)=\frac{1}{\sqrt{1-x^{2}}} \text { for }-1 \leq x \leq 1
$$

Question 2. Let $\left(a_{i}\right)_{i \in \mathbb{N}}$ be a sequence.
(a) State the definition for the convergence of $\left(a_{i}\right)_{i \in \mathbb{N}}$ with limit L.
(b) Assume that $\lim _{n \rightarrow \infty} a_{n}=L$ for some finite L. Prove from first principles that the sequence of consecutive differences $d_{i}=a_{i}-a_{i-1}$ converges with limit zero. Hint: Use the triangle inequality.

Question 3. Evaluate the following improper integrals.
(a) $\int_{2}^{\infty} \frac{1}{x^{3}} d x$
(b) $\int_{1}^{2} \frac{1}{\sqrt{2-x}} d x$
(c) $\int_{0}^{1} x \ln (x) d x$

Question 4. Show that the following improper integrals diverge.
(a) $\int_{0}^{\infty} \frac{1}{4+x^{2}} d x$
(b) $\int_{2}^{\infty} \frac{1}{\ln (x)} d x$

Question 5. Show that

$$
\int_{-1}^{1} \sqrt{\frac{1+x}{1-x}} d x=\pi
$$

Hint: Have a look at Question 1 (c).

