MA211 Calculus I – Problem Sheet 6

October 17, 2016, Lecturer: Claas Röver

QUESTION 1. Evaluate each of the following improper integrals if it exists, or justify that it diverges. *Hint:* Calculate $\frac{d}{dx}[\ln(\ln(x))]$.

(a)
$$\int_{2}^{\infty} \frac{1}{(x-1)^3} dx$$
 (b) $\int_{0}^{\infty} \frac{x}{1+2x^2} dx$ (c) $\int_{3}^{\infty} \frac{1}{x \ln(x)} dx$

QUESTION 2. (a) Carefully, state l'Hôpital's (or l'hospital's) rule.

(b) Use l'Hôpital's rule, possibly more than once, to find the following limits.

(i)
$$\lim_{x \to 0^+} \frac{\sin(x)}{x}$$
 (ii) $\lim_{x \to \infty} \frac{x^2}{e^x}$ (iii) $\lim_{x \to 0^+} x \ln(x)$

(c) Use the results of part (a) to evaluate the following improper integrals.

(i)
$$\int_{0}^{\pi/2} \frac{x\cos(x) - \sin(x)}{x^2} dx$$
 (ii) $\int_{0}^{\infty} x^2 e^{-x} dx$ (iii) $\int_{0}^{e} \ln(x) dx$

QUESTION 3. Recall that a function is monotone increasing, if its derivative is positive.

- (a) Show that $\ln(x) \le x 1$ for all $x \ge 1$.
- (b) Using part (a), or otherwise, show that \$\int_{2}^{\infty} \frac{1}{\ln(x)} dx\$ and \$\int_{1}^{2} \frac{1}{\ln(x)} dx\$ both diverge.
 (c) Extending the above argument, show that \$\int_{4}^{\infty} \frac{1}{\ln(\ln(x))} dx\$ and \$\int_{e}^{4} \frac{1}{\ln(\ln(x))} dx\$ both diverge.

QUESTION 4. For each of the following sequences, give the general formula for a_n , $n \ge 1$.

(a) $\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \dots$ (b) $\frac{1}{3}, \frac{1}{2}, \frac{3}{5}, \frac{2}{3}, \frac{5}{7}, \dots$ (c) $-1, \frac{1}{2}, \frac{-1}{3}, \frac{1}{4}, \frac{-1}{5}, \dots$ (d) $1, \frac{-1}{4}, \frac{1}{9}, \frac{-1}{16}, \frac{1}{25}, \dots$ (e) $1, 2, 6, 24, 120, 720, \dots$ (f) $1, 3, 9, 27, 81, 243, \dots$

 $\rm QUESTION~5.$ For each of the following series, decide whether it converges or diverges.

(a)
$$\sum_{n=1}^{\infty} \frac{n}{n+1}$$
 (b) $\sum_{n=1}^{\infty} \frac{2n}{n^2+n+1}$ (c) $\sum_{n=1}^{\infty} \frac{(-1)^n}{n^2}$