MA211 Calculus I – Problem Sheet 7

October 24, 2016, Lecturer: Claas Röver

- QUESTION 1. A ball, when dropped vertically, bounces back up to 60% of the height it was dropped from. How much distance does the ball travel if it is allowed to bounce indefinitely after dropping it from 3 m height?
- QUESTION 2. Prove the following statements. *Hint:* Use facts about limits of sums and differences of converging sequences from Problem Sheet 4.
 - (a) The series $\sum_{n=1}^{\infty} a_n$ converges if and only if, for every $N \ge 1$, the series $\sum_{n=N}^{\infty} a_n$ converges
 - (b) If the series $\sum_{n=1}^{\infty} a_n$ converges, then $\lim_{n \to \infty} a_n = 0$.
- QUESTION 3. You may use the fact that a bounded nondecreasing sequence is convergent, i.e. if there exists K such that $a_n \leq a_{n+1} \leq K$ for all $n \geq 1$, then $\lim_{n \to \infty} a_n$ exits.
 - (a) A series $\sum_{n=1}^{\infty} a_n$, with all $a_n \ge 1$, converges, if its sequence of partial sums is bounded.
 - (b) Estimation Theorem: Let $\{a_n\}$ and $\{b_n\}$ be sequences. If there exists a constant K with $a_n \leq Kb_n$, then
 - (i) if $\sum_{n=1}^{\infty} b_n$ converges, then so does $\sum_{n=1}^{\infty} a_n$; and (ii) if $\sum_{n=1}^{\infty} a_n$ diverges, then so does $\sum_{n=1}^{\infty} b_n$.

QUESTION 4. Determine the sum of the following telescoping series.

(a)
$$\sum_{n=1}^{\infty} \frac{1}{n(n+2)}$$
 (b) $\sum_{n=1}^{\infty} \frac{1}{(2n-1)(2n+1)}$

QUESTION 5. For each of the following series, decide whether it converges or diverges.

(a)
$$\sum_{n=1}^{\infty} \frac{3n^2}{4n^2 + 3n + 1}$$
 (b) $\sum_{n=1}^{\infty} \frac{7}{n^2 + \sqrt{n}}$ (c) $\sum_{n=1}^{\infty} \frac{3}{(\ln(n))^3}$
(d) $\sum_{n=1}^{\infty} \frac{n^4}{n!}$ (e) $\sum_{n=1}^{\infty} \frac{2^n}{3^n - n^3}$ (f) $\sum_{n=1}^{\infty} e^{-n} n!$