MA211 Calculus - Course Summary

Inverse function: Suppose $\mathcal{D} \subseteq \mathbb{R}$ and $f: \mathcal{D} \rightarrow \mathbb{R}$ is injective (on \mathcal{D}) with image \mathcal{I}. Then f is invertible and its inverse function $f^{-1}: \mathcal{I} \rightarrow \mathcal{D}$ satisfies $f^{-1}(f(x))=x$ for all $x \in \mathcal{D}, f\left(f^{-1}(x)\right)=x$ for all $x \in \mathcal{I}$ and, if f is differentiable, then so is f^{-1} and $\left(f^{-1}\right)^{\prime}(x)=\frac{1}{f^{\prime}\left(f^{-1}(x)\right)}$ for all $x \in \mathcal{I}$. Useful examples are $\frac{d}{d x}\left(\sin ^{-1}(x)\right)=\frac{1}{\sqrt{1-x^{2}}}$ and $\frac{d}{d x}\left(\tan ^{-1}(x)\right)=\frac{1}{x^{2}+1}$.
Hyperbolic functions, their inverses and derivatives are given in the table below and sketched on the right.

$f(x)$	$f^{-1}(x)$	$f^{\prime}(x)$
$\sinh (x)=\frac{1}{2}\left(e^{x}-e^{-x}\right)$	$\ln \left(x+\sqrt{x^{2}+1}\right), x \in \mathbb{R}$	$\cosh (x)$
$\cosh (x)=\frac{1}{2}\left(e^{x}+e^{-x}\right)$	$\ln \left(x+\sqrt{x^{2}-1}\right), x \geq 1$	$\sinh (x)$
$\tanh (x)=\frac{\sinh (x)}{\cosh (x)}$	$\frac{1}{2} \ln \left(\frac{1+x}{1-x}\right),-1<x<1$	$\frac{1}{\cosh ^{2}(x)}$

A sequence $\left(a_{n}\right)_{n \geq 1}=\left(a_{1}, a_{2}, \ldots\right)$ converges to the limit $L \in \mathbb{R}$, if for every $\varepsilon>0$, there exists $N \geq 1$ such that $\left|L-a_{n}\right|<\varepsilon$ for all $n \geq N$. A sequence diverges, if it does not converge.
Improper integrals have (at least) one boundary at $\pm \infty$ or a vertical asymptote of the integrand in the closed interval between the boundaries. They are calculated as limits of proper integrals as in

$$
\int_{b}^{\infty} f(x) d x=\lim _{R \rightarrow \infty} \int_{b}^{R} f(x) d x \quad \text { or } \quad \int_{a}^{b} f(x) d x=\lim _{c \rightarrow a^{+}} \int_{c}^{b} f(x) d x
$$

where f is continuous on the interval $I=(a, \infty)$ but has a vertical asymptote at a, and $b \in I$.
For $p \geq 0$ and $a>0$, the p-integral formulæ, which you should be able to prove, are:

$$
\int_{a}^{\infty} x^{-p} d x \text { is }\left\{\begin{array} { l l }
{ \text { convergent, } } & { \text { if } p > 1 } \\
{ \text { divergent, } } & { \text { if } p \leq 1 }
\end{array} , \quad \text { and } \quad \int _ { 0 } ^ { a } x ^ { - p } d x \text { is } \left\{\begin{array}{ll}
\text { convergent, } & \text { if } p<1 \\
\text { divergent, } & \text { if } p \geq 1
\end{array}\right.\right.
$$

L'Hôpital's rule says $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}$, if $\lim _{x \rightarrow a} f(x)$ and $\lim _{x \rightarrow a} g(x)$ are both 0 or both $\pm \infty$,
where $a \in \mathbb{R} \cup\{ \pm \infty\}$. Series are expressions of the form $\sigma=\sum_{n=0}^{\infty} a_{n}$, and defined as the limit of their sequence of partial sums $s_{n}=\sum_{j=0}^{n} a_{j}$, i.e. $\sigma=\lim _{n \rightarrow \infty} s_{n}$. Geometric series $\sum_{n=0}^{\infty} a r^{n}=\frac{a}{1-r}$ for $|r|<1$. Convergence tests: Null-sequence: If σ converges, then $\lim _{n \rightarrow \infty} a_{n}=0$. Usually used as: if $\lim _{n \rightarrow \infty} a_{n} \neq 0$, then σ diverges. Integral Test: If $a_{n}=f(n)$ with continuous f, then σ converges if and only if $\int_{N}^{\infty} f(x) d x$ does. Put $\rho=\left\{\begin{array}{cc}\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right| & \text { (Quotient Test) } \\ \lim _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|} & (\text { Root Test) }\end{array}\right\}$. Then $\left\{\begin{array}{cc}\sigma \text { diverges, } & N \\ \sigma \text { converges (absolutely), } & \text { if } \rho>1 \\ \text { no conclusion is possible, } & \text { if } \rho=1\end{array}\right\}$.

Differential equations are equations which involve a function $y=y(x)$, some of its derivatives and possibly x. An equation is of order n if the n-th derivative is the highest derivative that occurs.
First order separable: $\frac{d y}{d x}=f(x) g(y)$. Solve by integrating $\int \frac{1}{g(y)} d y=\int f(x) d x$.
First order homogeneous: $\frac{d y}{d x}=f\left(\frac{y}{x}\right)$. With $v=\frac{y}{x}$ we get $\frac{d v}{d x}=\frac{f(v)-v}{x}$ which is separable.
First order linear: $\frac{d y}{d x}+p(x) y=q(x)$. With integrating factor $\mu=\int p d x$, we have $\frac{d \mu}{d x}=p$ and so $\frac{d}{d x}\left(y e^{\mu}\right)=e^{\mu}\left(\frac{d y}{d x}+p y\right)=e^{\mu} q$. Hence the general solution is $y=e^{-\mu} \int q e^{\mu} d x$.
Second order linear, constant coefficients: $a y^{\prime \prime}+b y^{\prime}+c y=0$. The general solution is $A e^{k_{1} x}+B e^{k_{2} x}$ or $A e^{k x}+B x e^{k x}$ or $e^{k x}(A \cos (\omega x)+B \sin (\omega x))$, depending on whether the auxiliary equation $a x^{2}+b x+c=0$ has two real solutions k_{1}, k_{2} or one real solution k or two complex solutions $k+i \omega$.

