MA211 Calculus — Course Summary

Inverse function: Suppose $\mathcal{D} \subseteq \mathbb{R}$ and $f: \mathcal{D} \to \mathbb{R}$ is injective (on \mathcal{D}) with image \mathcal{I} . Then f is invertible and its inverse function $f^{-1}: \mathcal{I} \to \mathcal{D}$ satisfies $f^{-1}(f(x)) = x$ for all $x \in \mathcal{D}$, $f(f^{-1}(x)) = x$ for all $x \in \mathcal{I}$, and f = 1 is differentiable, then so is f^{-1} and $(f^{-1})'(x) = \frac{1}{f'(f^{-1}(x))}$ for all $x \in \mathcal{I}$. Useful examples are $\frac{d}{dx} (\sin^{-1}(x)) = \frac{1}{\sqrt{1-x^2}}$ and $\frac{d}{dx} (\tan^{-1}(x)) = \frac{1}{x^2+1}$. **Hyperbolic functions**, their inverses and derivatives are given in the table below and sketched on the right. $\frac{f(x)}{\sinh(x) = \frac{1}{2}(e^x - e^{-x})} \frac{\ln(x + \sqrt{x^2+1})}{\ln(x + \sqrt{x^2-1})}, x \in \mathbb{R}$ $\cosh(x)$ $\tanh(x) = \frac{\sinh(x)}{\cosh(x)} \frac{1}{2} \ln(\frac{1+x}{1-x}), -1 < x < 1$ $\frac{1}{\cosh^2(x)}$ $\sinh(x)^{-2}$

A sequence $(a_n)_{n\geq 1} = (a_1, a_2, \ldots)$ converges to the limit $L \in \mathbb{R}$, if for every $\varepsilon > 0$, there exists $N \ge 1$ such that $|L - a_n| < \varepsilon$ for all $n \ge N$. A sequence diverges, if it does not converge.

Improper integrals have (at least) one boundary at $\pm\infty$ or a vertical asymptote of the integrand in the closed interval between the boundaries. They are calculated as limits of proper integrals as in

$$\int_{b}^{\infty} f(x) dx = \lim_{R \to \infty} \int_{b}^{R} f(x) dx \quad \text{or} \quad \int_{a}^{b} f(x) dx = \lim_{c \to a^{+}} \int_{c}^{b} f(x) dx$$

where f is continuous on the interval $I = (a, \infty)$ but has a vertical asymptote at a, and $b \in I$. For $p \ge 0$ and a > 0, the <u>p-integral formulæ</u>, which you should be able to prove, are:

$$\int_{a}^{\infty} x^{-p} dx \text{ is } \left\{ \begin{array}{l} \text{convergent, if } p > 1 \\ \text{divergent, if } p \le 1 \end{array}, \text{ and } \int_{0}^{a} x^{-p} dx \text{ is } \left\{ \begin{array}{l} \text{convergent, if } p < 1 \\ \text{divergent, if } p \ge 1 \end{array} \right. \right. \\ \mathbf{L'Hôpital's rule says } \lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}, \text{ if } \lim_{x \to a} f(x) \text{ and } \lim_{x \to a} g(x) \text{ are both } 0 \text{ or both } \pm \infty, \\ \text{where } a \in \mathbb{R} \cup \{\pm \infty\}. \end{array} \right.$$
 Series are expressions of the form $\sigma = \sum_{n=0}^{\infty} a_n$, and defined as the limit of their sequence of partial $sums s_n = \sum_{j=0}^{n} a_j, \text{ i.e. } \sigma = \lim_{n \to \infty} s_n. \text{ Geometric series } \sum_{n=0}^{\infty} ar^n = \frac{a}{1-r} \text{ for } |r| < 1. \text{ Convergence tests: } \\ \text{Null-sequence: If } \sigma \text{ converges, then } \lim_{n \to \infty} a_n = 0. \text{ Usually used as: if } \lim_{n \to \infty} a_n \neq 0, \text{ then } \sigma \text{ diverges.} \\ \text{Integral Test: If } a_n = f(n) \text{ with continuous } f, \text{ then } \sigma \text{ converges if and only if } \int_{\infty}^{f} f(x) dx \text{ does.} \\ \text{Put } \rho = \left\{ \begin{array}{c} \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| \\ \lim_{n \to \infty} \sqrt[n]{|a_n|} \end{array} \right. \begin{array}{c} (Root Test) \\ (Root Test) \end{array} \right\}. \text{ Then } \left\{ \begin{array}{c} \sigma \text{ diverges, if } \rho > 1 \\ \sigma \text{ converges (absolutely), if } \rho < 1 \\ \text{no conclusion is possible, if } \rho = 1 \end{array} \right\}. \end{cases}$

Differential equations are equations which involve a function y = y(x), some of its derivatives and possibly x. An equation is of **order** n if the n-th derivative is the highest derivative that occurs.

First order separable:
$$\frac{dy}{dx} = f(x)g(y)$$
. Solve by integrating $\int \frac{1}{g(y)} dy = \int f(x) dx$.
First order homogeneous: $\frac{dy}{dx} = f\left(\frac{y}{x}\right)$. With $v = \frac{y}{x}$ we get $\frac{dv}{dx} = \frac{f(v) - v}{x}$ which is separable.
First order linear: $\frac{dy}{dx} + p(x)y = q(x)$. With integrating factor $\mu = \int p \, dx$, we have $\frac{d\mu}{dx} = p$ and so $\frac{d}{dx}(ye^{\mu}) = e^{\mu}\left(\frac{dy}{dx} + py\right) = e^{\mu}q$. Hence the general solution is $y = e^{-\mu}\int qe^{\mu} dx$.
Second order linear, constant coefficients: $ay'' + by' + cy = 0$. The general solution is $Ae^{k_1x} + Be^{k_2x}$.

Second order linear, constant coefficients: $ay^{n} + by + cy = 0$. The general solution is $Ae^{i_{1}\omega} + Be^{i_{2}\omega}$ or $Ae^{kx} + Bxe^{kx}$ or $e^{kx}(A\cos(\omega x) + B\sin(\omega x))$, depending on whether the *auxiliary equation* $ax^{2} + bx + c = 0$ has two real solutions k_{1} , k_{2} or one real solution k or two complex solutions $k + i\omega$.